Источник энергии для нашего организма.

ФИЗИОЛОГИЯ ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ. РАЦИОНАЛЬНОЕ ПИТАНИЕ.

План лекции.

    Понятие об обмене веществ в организме животных и человека. Источники энергии в организме.

    Основные понятия и определения физиологии обмена веществ и энергии.

    Методы изучения энергетического обмена у человека.

    Понятие о рациональном питании. Правила составления пищевых рационов.

    Понятие об обмене веществ в организме животных и человека. Источники энергии в организме.

Организм человека представляет собой открытую термодина-мическую систему, которая характеризуется наличием обмена веществ и энергии.

Обмен веществ и энергии – это совокупность физических, биохимических и физиологических процессов превращения веществ и энергии в организме человека и обмен веществами и энергией между организмом и окружающей средой. Указанные процессы, протекающие в организме человека изучают многие науки: биофизика, биохимия, молекулярная биология, эндокринология и, конечно же, физиология.

Обмен веществ и обмен энергии тесно взаимосвязаны между собой, однако, с целью упрощения понятий, их рассматривают раздельно.

Обмен веществ (метаболизм) – совокупность химических и физических превращений, происходящих в организме и обеспечивающих его жизнедеятельность во взаимосвязи с внешней средой.

В обмене веществ различают две направленности процессов по отношению к структурам организма: ассимиляцию или анаболизм и диссимиляцию или катаболизм.

Ассимиляция (анаболизм) – совокупность процессов создания жи-вой материи. Указанные процессы потребляют энергию.

Диссимиляция (катаболизм) – совокупность процессов распада жи-вой материи. В результате диссимиляции энергия воспроизводится.

Жизнь животных и человека представляет из себя единство процес-сов ассимиляции и диссимиляции. Факторами, сопрягающими данные процессы, являются две системы:

    АТФ – АДФ (АТФ - аденозин три фосфат, АДФ – аденозин ди фосфат;

    НАДФ (окисленный) – НАДФ (восстановленный), где НАДФ – никотин амид ди фосфат.

Посредничество указанных соединений между процессами ассимиляции и диссимиляции обеспечивается тем, что молекулы АТФ и НАДФ выступают в роли универсальных биологических аккумуляторов энергии, ее переносчика, своеобразной «энергетической валютой» организма. Вместе с тем, прежде чем энергия аккумулируется в молекулах АТФ и НАДФ, ее необходимо извлечь из питательных веществ, которые поступают с пищей в организм. Такими пищевыми веществами являются известные вам белки, жиры и углеводы. К этому же следует добавить, что питательные вещества выполняют не только функцию поставщиков энергии, но и функцию поставщиков строительного материала (пластическая функция) для клеток, тканей и органов. Роль различных питательных веществ в реализации пластических и энергетических потребностей организма неодинакова. Углеводы в первую очередь выполняют энергетическую функцию, пластическая функция углеводов незначительна. Жиры в равной степени выполняют и энергетические и пластические функции. Белки являются основным строительным материалом для организма, но при определенных условиях могут являться и источниками энергии.

Источники энергии в организме.

Как уже отмечалось выше, основными источниками энергии в организме являются пищевые вещества: углеводы, жиры и белки. Освобождение энергии, содержащейся в пищевых веществах, в организме человека протекает в три этапа:

1 этап. Белки расщепляются до аминокислот, углеводы - до гексоз, например, до глюкозы или фруктозы, жиры – до глицерина и жирных кислот. На данном этапе организм в основном тратит энергию на расщепление веществ.

2 этап. Аминокислоты, гексозы и жирные кислоты в ходе биохимических реакций превращаются в молочную и пировиноградную кислоты, а также в Ацетил коэнзим А. На данном этапе из пищевых веществ высвобождается до 30% потенциальной энергии.

3 этап. При полном окислении все вещества расщепляются до СО 2 и Н 2 О. На данном этапе, в метаболическом котле Кребса, высвобождается оставшаяся часть энергии, около 70%. При этом не вся высвобождающаяся энергия аккумулируется в химическую энергию АТФ. Часть энергии распыляется в окружающую среду. Эта теплота получила название первичной теплоты (Q 1). Энергия аккумулированная АТФ в дальнейшем расходуется на различные виды работы в организме: механическую, электрическую, химическую и активный транспорт. При этом часть энергии теряется в виде так называемой вторичной теплоты Q 2 . Смотри схему 1.

Углеводы

Биологическое окисление

Н 2 О + СО 2 + Q 1 + АТФ

Механичес-кая работа

+ Q 2

Химическая работа

+ Q 2

Электричес-кая работа

+ Q 2

Активный транспорт

+ Q 2

Схема 1. Источники энергии в организме, результаты полного окисления пищевых веществ и виды выделяемой теплоты в организме.

Следует добавить, что количество выделяемой при окислении пищевых веществ не зависит от количества промежуточных реакций, а зависит от начального и конечного состояния химической системы. Данное положение было впервые сформулировано Гессом (закон Гесса).

Более подробно данные процессы вы рассмотрите на лекциях и занятиях, которые будут проводить с вами преподаватели кафедры биохимии.

Энергетическая ценность пищевых веществ.

Энергетическая ценность пищевых веществ оценивается при помощи специальных устройств – оксикалориметрах. Установлено, что при полном окислении 1 г. углеводов выделяется 4,1 ккал (1 ккал=4187 Дж.), 1 г. жиров - 9.45 ккал., 1 г. белков – 5,65 ккал. Следует добавить, что часть пищевых веществ, поступающих в организм, не усваивается. Например, в среднем не усваивается около 2% углеводов, 5% жиров и до 8% белков. К тому же, не все пищевые вещества в организме расщепляются до конечных продуктов – углекислого газа (диоксида углерода) и воды. Например, часть продуктов неполного расщепления белков в виде мочевины выделяется с мочой.

С учетом вышеизложенного можно отметить, что реальная энерге-тическая ценность пищевых веществ несколько ниже, чем установлен-ная в экспериментальных условиях. Реальная энергетическая ценность 1 г. углеводов составляет 4,0 ккал, 1 г. жиров – 9,0 ккал, 1 г. белков – 4,0 ккал.

    Основные понятия и определения физиологии обмена веществ и энергии.

Интегральной (общей) характеристикой энергетического обмена организма человека являются суммарные энергетические траты или валовый энергетические траты.

Валовые энергетические траты организма - совокупность энергетических трат организма в течение суток в условиях его обычного (естественного) существования. Валовые энергетические траты включают три компонента: основной обмен, специфическое динамическое действие пищи и рабочую прибавку. Валовые энергетические траты оценивают в кдж/кг/сутки или ккал/кг/сутки(1 кдж=0,239 ккал).

Основной обмен.

Начало учению об основном обмене положили работы ученых Тартусского университета Биддера и Шмидта (Bidder and Schmidt, 1852).

Основной обмен – минимальный уровень энергетических трат, необходимый для поддержания жизнедеятельности организма.

Представление об основном обмене, как минимальном уровне энергетических трат организма предъявляет и ряд требований к условиям, в которых должен оцениваться данный показатель.

Условия, в которых должен оцениваться основной обмен:

    состояние полного физического и психического покоя (желательно в положении лежа);

    температура комфорта окружающей среды (18-20 градусов по Цельсию);

    спустя 10 – 12 часов после последнего приема пищи, чтобы избежать увеличения энергетического обмена, связанного с приемом пищи.

Факторы, влияющие на основной обмен.

Основной обмен зависит от возраста, роста, массы тела и половой принадлежности.

Влияние возраста на основной обмен.

Самый высокий основной обмен в пересчете на 1 кг. Массы тела у новорожденных (50-54 ккал/кг/сутки), самый низкий у пожилых людей (после 70 лет основной обмен составляет в среднем 30 ккал/кг/сутки). На постоянный уровень основной обмен выходит к моменту полового созревания к 12 – 14 годам и остается стабильным до 30-35 лет (около 40 ккал/кг/сутки).

Влияние роста и массы тела на основной обмен.

Между массой тела и основным обменом существует практически линейная, прямая зависимость – чем больше масса тела, тем больше уровень основного обмена. Однако, эта зависимость не абсолютна. При повышении массы тела за счет мышечной ткани указанная зависимость практически линейна, однако, если увеличение массы тела связано с увеличением количества жировой ткани эта зависимость приобретает нелинейный характер.

Поскольку масса тела при прочих равных условиях зависит от роста (чем больше рост – тем больше масса тела), между ростом и основным обменом существует прямая зависимость – чем больше рост, тем больше основной обмен.

Учитывая тот факт, что рост и масса тела влияют на общую площадь тела, М. Рубнер (M.Rubner) сформулировал закон, в соответствии с которым основной обмен зависит от площади тела: чем больше площадь тела, тем больше основной обмен. Однако, указанный закон практически перестает работать в условиях, когда температура окружающей среды равна температуре тела. Кроме того, неодинаковая волосистость кожи существенно изменяет теплообмен между организмом и окружающей средой и поэтому закон Рубнера в этих условиях также имеет ограничения.

Влияние половой принадлежности на уровень основного обмена.

У мужчин уровень основного обмена на 5-6% выше, чем у женщин. Это объясняется различным соотношением жировой и мышечной ткани на 1 кг массы тела, а также различным уровнем метаболизма в связи с различиями химической структуры половых гормонов и их физиологическими эффектами.

Специфическое динамическое действие пищи.

Термин специфическое динамическое действие пищи впервые ввел в научный обиход М.Рубнер в 1902 году.

Специфическое динамическое действие пищи – это повышение энергетического обмена организма человека, связанное с приемом пищи. Специфическое динамическое действие пищи – это энергетические траты организма на механизмы утилизации принимаемой пищи. Указанный эффект в изменении энергетического обмена отмечается с момента подготовки к приему пищи, во время приема пищи и продолжается 10-12 часов после приема пищи. Максимальное увеличение энергетического обмена после приема пищи отмечаеся через 3 – 3,5 часа. Специальные исследования показали, что на утилизацию пищи затрачивается от 6 до 10% ее энергетической ценности.

Рабочая прибавка.

Рабочая прибавка является третьим компонентом валовых энергетических трат организма. Рабочая прибавка является частью энергетических трат организма на мышечную деятельность в окружающей среде. При тяжелой физической работе энергетические траты организма могут повышаться в 2 раза по сравнению с уровнем основного обмена.

    Методы изучения энергетического обмена у человека.

Для изучения энергетического обмена у человека разработан целый ряд методов объединенный общим названием – калориметрия.

Источниками энергии для организма человека являются белки, жиры, углеводы которые составляют 90% сухого веса всего питания и поставляют 100% энергии. Все три питательных вещества обеспечивают энергию (измеряется в калориях), но количество энергии в 1 грамме вещества различно:

  • 4 килокалории в грамме углеводов или белков;
  • 9 килокалорий в грамме жира.

В грамме жира в 2 раза больше энергии для организма чем в грамме углеводов и белков.

Эти питательные вещества также различаются в том, как быстро они поставляют энергию. Углеводы поставляются быстрее, а жиры медленнее.

Белки, жиры, углеводы перевариваются в кишечнике, где они разбиваются на основные единицы:

  • углеводы в сахаре
  • белки в аминокислотах
  • жиры в жирных кислотах и глицерине.

Организм использует эти базовые единицы для создания веществ, которые необходимы для выполнения основных жизненных функций (в том числе другие углеводы, белки, жиры).

Виды углеводов

В зависимости от размера молекулы углеводов могут быть простыми или сложными.

  • Простые углеводы: различные виды сахаров, таких, как глюкоза и сахароза (столовый сахар), являются простыми углеводами. Это маленькие молекулы, поэтому они быстро поглощается организмом и являются быстрым источником энергии. Они быстро увеличивают уровень глюкозы в крови (уровень сахара в крови). Фрукты, молочные продукты, мед и кленовый сироп содержат большое количество простых углеводов, которые обеспечивают сладкий вкус в большинстве конфет и пирожных.
  • Сложные углеводы: эти углеводы состоят из длинных строк простых углеводов. Поскольку сложные углеводы большие молекулы, они должны быть разбиты на простые молекулы прежде, чем они могут быть поглощены. Таким образом, они, как правило, обеспечивают энергию для организма более медленно, чем простые, но все же быстрее, чем белок или жир. Это потому что они перевариваются медленнее, чем простые углеводы, и меньше шансов быть преобразованными в жир. Они также повышают уровень сахара в крови более медленными темпами и на более низких уровнях, чем простые, но для более длительного времени. Сложные углеводы включают крахмал и белки, которые имеются в продуктах пшеницы (хлеб и макаронные изделия), другие зерновые (рожь и кукуруза), бобы и корнеплоды (картофель).

Углеводы могут быть:

  • рафинированными
  • нерафинированными

Рафинированные – обработанные, волокна и отруби, а также многие из витаминов и минералов, которые они содержат удалены. Таким образом в процессе метаболизма обрабатываются эти углеводы быстро и обеспечивают мало питания, хотя они содержат примерно столько же калорий. Рафинированные продукты часто обогащенные, то есть витамины и минералы добавляются искусственно, чтобы повысить питательную ценность. Диета с высоким содержанием простых или рафинированных углеводов, как правило, повышают риск ожирения и диабета.

Нерафинированные углеводы из растительных продуктов. В них углеводы содержатся в виде крахмала и клетчатки. Это такие продукты как картофель, цельное зерно, овощи, фрукты.

Если люди потребляют больше углеводов, чем они нуждаются, организм хранит некоторые из этих углеводов в клетках (как гликоген), а остальные преобразует в жир. Гликоген является сложным углеводом для преобразования в энергию и хранится в печени и мышцах. Мышцы используют гликоген энергию в периоды интенсивных упражнений. Количество углеводов, хранящихся как гликоген, может обеспечить калориями на день. Несколько других тканей тела хранят сложные углеводы, которые не могут быть использованы как источник энергии для организма.

Гликемический индекс углеводов

Гликемический индекс углеводов представляет значение, как быстро их потребление повышает уровень сахара в крови. Диапазон значений от 1 (самое медленное усвоение) до 100 (быстрое, индекс чистой глюкозы). Однако, как быстро на самом деле повышается уровень зависит от продуктов, попадающих в организм.

Гликемический индекс, как правило, ниже для сложных углеводов, чем для простых углеводов, но есть исключения. Например, фруктоза (сахар в плодах) имеет незначительное влияние на уровень сахара в крови.

На гликемический индекс влияет технология обработки и состав продовольствия:

  • обработка: обработанные, нарезанные или мелко молотые продукты, как правило, имеют высокий гликемический индекс
  • тип крахмала: различные виды крахмала поглощаются по-разному. Крахмал картофельный переваривается и сравнительно быстро впитывается в кровь. Ячмень переваривается и поглощается гораздо медленнее.
  • содержание волокна: больше клетчатки пища, тем труднее это переварить. Как следствие сахар более медленно всасывается в кровь
  • спелость фруктов: зрелые плоды, больше сахара в нем и чем выше его гликемический индекс
  • содержание жира или кислоты: содержит больше жира или кислоты пищи, медленно перевариваются и медленно ее сахара всасываются в кровь
  • приготовление пищи: как готовится пища может повлиять на то как быстро всасывается в кровь. Как правило, приготовление пищи или измельчение пищи увеличивает его гликемический индекс, поскольку после процесса приготовления пищи их легче переваривать и усваивать.
  • другие факторы: процессы питания организма варьируется от человека к человеку, как быстро влияют углеводы на преобразование в сахар и всасывание. Насколько хорошо пережевана пища и как быстро глотается важно.

Гликемический индекс некоторых продуктов

Продукты Состав Индекс
Фасоль Семена фасоли 33
Чечевица красная 27
Соя 14
Хлеб Ржаной хлеб 49
Белый 69
Цельная пшеница 72
Зерновые культуры Все отруби 54
Кукурузные хлопья 83
Овсяная каша 53
Запыхаться риса 90
Измельченные пшеница 70
Молочные Молоко, мороженое и йогурт 34 – 38
Фрукты Яблоко 38
Банан 61
Мандарин 43
Апельсиновый сок 49
Клубника 32
Зерно Ячмень 22
Коричневый рис 66
Белый рис 72
Макаронные изделия - 38
Картофель Мгновенное пюре (через блендер) 86
Пюре 72
Сладкое пюре 50
Закуски Кукурузные чипсы 72
Печенье овсяное 57
Картофельные чипсы 56
Сахар Фруктоза 22
Глюкоза 100
Мед 91
Сахар-рафинад 64

Гликемический индекс важный параметр, потому что углеводы повышают сахар в крови, если быстро (с высоким гликемическим индексом) то увеличивается уровень инсулина. Увеличение инсулина может привести к низкому уровню сахара в крови (гипогликемия) и голоду, который, как правило, потребляет лишние калории и набирает вес.

Углеводы с низким гликемическим индексом не сильно увеличивают уровень инсулина. В результате люди чувствуют себя сытыми дольше после еды. Потребление углеводов с низким гликемическим индексом также приводит к более здоровому уровню холестерина и снижает риск ожирения и диабета у людей с диабетом, риск осложнений из-за диабета.

Несмотря на связь между продуктами с низким гликемическим индексом и улучшением здоровья, использование индекса для выбора продуктов не приводит автоматически к здоровому питанию.

Например, высокий гликемический индекс у картофельных чипсов и некоторых конфет не выбор здорового питания, но некоторые пищевые продукты с высоким гликемическим индексом содержат ценные витамины и минералы.

Таким образом, гликемический индекс следует использовать только в качестве общего руководства для выбора продуктов.

Гликемическая нагрузка продуктов

Гликемический индекс показывает, как быстро углеводы в пище всасываются в кровь. Он не включает количество углеводов в пище, которые имеют важное значение.

Гликемическая нагрузка, относительно новый термин, включает гликемический индекс и количество углеводов в пище.

Продукты питания, такие как морковь, бананы, арбуз или хлеб из муки грубого помола, могут иметь высокий гликемический индекс, но содержат сравнительно мало углеводов и, таким образом, у них низкая гликемическая нагрузка продуктов. Такие продукты имеют незначительное влияние на уровень сахара в крови.

Белки в продуктах

Белки состоят из структуры, называемой аминокислоты и образуют сложные образования. Поскольку белки являются сложными молекулами, организм занимает больше времени, чтобы впитать их. В результате они гораздо медленный и долгий источник энергии для организма человека, чем углеводы.

Существуют 20 аминокислот. Организм человека синтезирует некоторые из компонентов в организме, но он не может синтезировать 9 аминокислот - называемые незаменимые аминокислоты. Они должны употребляться в рационе питания. Каждый нуждается в 8 из этих аминокислот: изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валина. Младенцы также нуждаются в 9 аминокислоте — гистидине.

Процент белка, который организм может использовать для синтеза незаменимых аминокислот варьируется. Организм может использовать 100% белка в яйце и высокий процент из белков молока и мяса, но может использовать немного меньше половины белка из большинства овощей и зерновых.

Организм любого млекопитающего нуждается в белке для обслуживания и замены тканей росте. Белок обычно не используется как источник энергии для организма человека. Однако если организм не получает достаточного количества калорий из других питательных веществ или из жира, хранящихся в организме, белок используется для энергии. Если больше белка чем необходимо, организм преобразует белок и сохраняет его компоненты как жир.

Живое тело содержит большое количество белка. Белок, главный строительный блок в организме и является основным компонентом большинства клеток. Например, мышцы, соединительная ткань и кожа все построено из белка.

Взрослые должны съесть около 60 граммов белка в день (1,5 грамм на килограмм веса или 10-15% от общего числа калорий).

Взрослым, которые пытаются развить мышцы нужно немного больше. Детям также необходимо белка больше потому, что они растут.

Жиры

Жиры являются сложными молекулами, состоящими из жирных кислот и глицерина. Организм нуждается в жирах для роста и как источник энергии для организма. Жир также используется для синтеза гормонов и других веществ, необходимых для деятельности органа (например, простагландины).

Жиры медленный источник энергии, но наиболее энергоэффективный вид пищи. Каждый грамм жира поставляет телу около 9 калорий, более чем вдвое больше, чем поставляемые белки или углеводы. Жиры — эффективная форма энергии и тело хранит излишки энергии как жир. Организм откладывает избыточный жир в брюшной полости (сальниковый жир) и под кожу (подкожный жир), чтобы использовать, когда требуется больше энергии. Тело может также изъять избыток жира из кровеносных сосудов и из органов, где он может блокировать поток крови и из поврежденных органов, что часто вызывает серьезные расстройства.

Жирные кислоты

Когда организм нуждается в жирных кислотах, он может сделать (синтезировать) некоторые из них. Некоторые кислоты, называемые незаменимые жирные кислоты, не могут быть синтезированы и должны потребляться в рационе питания.

Незаменимые жирные кислоты составляют около 7% жира, потребляемого в нормальной диете и около 3% от общего количества калорий (около 8 грамм). Они включают линолевую и линоленовую кислоты, которые присутствуют в некоторых растительных маслах. Эйкозапентаеновая и докозагексаеновая кислоты, которые являются жирными кислотами необходимы для развития мозга и могут быть синтезированы из линолевой кислоты. Однако они также присутствуют в некоторых морских рыбных продуктах, которые являются более эффективным источником.

Где находится жир?

Тип жира

Источник

Мононенасыщенные Авокадо, оливковое масло

Арахисовое масло

Полиненасыщенные Рапс, кукуруза, соя, подсолнечник и многие другие жидкие растительные масла
Насыщенные Мясо, особенно говядины

Жирное молочные продукты, такие как цельное молоко, сливочное масло и сыр

Кокосовое и пальмовое масла

Искусственно гидрогенизированные растительные масла

Омега-3 жирные кислоты Льняное семя

Озерная форель и некоторых глубоководных рыб, таких как скумбрия, лосось, сельдь и тунец

Зеленые листовые овощи

Грецкие орехи

Омега-6 жирные кислоты Растительные масла (в том числе подсолнечника, сафлора, кукуруза, хлопковое и соевого масла)

Рыбий жир

Яичные желтки

Транс-жиры Коммерчески запеченные продукты, такие, как печенье, крекеры и пончики

Картофель фри и другие жареные продукты

Маргарин

Картофельные чипсы

Линолевая и арахидоновая кислоты состоят из омега-6 жирных кислот.

Линоленовой кислота, эйкозапентаеновая и докозагексаеновая кислоты представляют омега-3 жирные кислоты.

Питание, богатое омега-3 жирными кислотами может снизить риск атеросклероза (включая заболевание коронарной артерии). Озерная форель и некоторые глубоководные рыбы содержат большое количество Омега-3 жирных кислот.

Необходимо потреблять достаточное количество омега-6 жирных кислот

Виды жиров

Существуют различные виды жиров

  • мононенасыщенные
  • полиненасыщенные
  • насыщенные

Употребление насыщенных жиров увеличивает уровень холестерина и риск атеросклероза. Продукты, полученные от животных обычно содержат насыщенные жиры, которые, как правило, твердые при комнатной температуре. Жиры, полученных из растений обычно содержат мононенасыщенные или полиненасыщенные жирные кислоты, которые, как правило, жидкие при комнатной температуре. Исключением являются пальмовое и кокосовое масло. Они содержат больше насыщенных жиров, чем другие растительные масла.

Транс-жиры (транс-жирные кислоты) — другая категория жира. Они искусственные и формируются путем добавления атомов водорода (гидрирования) мононенасыщенных или полиненасыщенных жирных кислот. Жиры могут полностью или частично быть гидрогенизированные (насыщенные атомами воды). Основным источником питания транс-жиров является частично гидрогенизированные растительные масла в коммерчески подготовленных продуктах. Потребление транс-жиров может негативно повлиять на уровень холестерина в организме и может способствовать риску атеросклероза.

Жиры в питании

  • жир должен быть ограничен и составлять менее 30% от общего количества ежедневных калорий (или менее 90 грамм в день)
  • насыщенные жиры должны употребляться ограниченно до 10%.

Когда потребление жиров сокращается до 10% или меньше от общего количества ежедневных калорий, уровень холестерина резко уменьшается.

Углеводы, белки и жиры представляют основные источники энергии для человека необходимой для жизнедеятельности и их качество имеет важное значения для здоровья.

Энергия не может возникнуть ниоткуда или исчезнуть в никуда, она может только превращаться из одного вида в другой. А от чего зависит энергия человека?

Вся энергия на Земле берется от Солнца. Растения способны превращать солнечную энергию в химическую (фотосинтез).

Люди не могут напрямую использовать энергию Солнца, однако мы можем получать энергию из растений. Мы едим либо сами растения, либо мясо животных, которые ели растения. Человек получает всю энергию из еды и питья.

Пищевые источники энергии

Энергия человека для его жизнедеятельности зависит от употребляемой им пищи. Единицей измерения энергии является калория. Одна калория – это количество тепла, необходимое для нагрева 1 кг воды на 1°С. Большую часть энергии мы получаем из следующих питательных веществ:

– Углеводы – 4ккал (17кДж) на 1г
– Белки (протеин) – 4ккал (17кДж) на 1г
– Жиры – 9ккал (37кДж) на 1г

Углеводы (сахара и крахмал) являются важнейшим источником энергии, больше всего их содержится в хлебе, рисе и макаронах. Хорошими источниками протеина служат мясо, рыба и яйца. Сливочное и растительное масло, а также маргарин почти полностью состоят из жирных кислот. Волокнистая пища, а также алкоголь также дают организму энергию, но уровень их потребления сильно отличается у разных людей.

Витамины и минералы сами по себе не дают организму энергию, однако, они принимают участие в важнейших процессах энергообмена в организме.

Энергетическая ценность различных пищевых продуктов сильно отличается. Здоровые люди достигают сбалансированности своей потреблением самой разнообразной пищи. Очевидно, что, чем более активный образ жизни ведет человек, тем больше он нуждается в пище, или тем более энергоемкой она должна быть.

Самым важным источником энергии для человека являются углеводы.

Сбалансированная обеспечивает организм разными видами углеводов, но большая часть энергии должна поступать из крахмала. В последние годы немало внимания уделялось изучению связи между компонентами питания людей и различными болезнями. Исследователи сходятся во мнении, что людям необходимо уменьшать потребление жирной пищи в пользу углеводов.

Каким образом мы получаем энергию из пищи?

После того, как пища проглатывается, она некоторое время находится в желудке. Там под воздействием пищеварительных соков начинается ее переваривание. Этот процесс продолжается в тонком кишечнике, в результате компоненты пищи распадаются на более мелкие единицы, и становится возможной их абсорбция через стенки кишечника в кровь. После этого организм может использовать питательные вещества на производство энергии, которая вырабатывается и хранится в виде аденозин трифосфат (АТФ).

Молекула АТФ из аденозина и трех фосфатных групп, соединенных в ряд. Запасы энергии «сосредоточены» в химических связях между фосфатными группами. Чтобы высвободить эту потенциальную энергию одна фосфатная группа должна отсоединиться, т.е. АТФ распадается до АДФ (аденозин дифосфат) с выделением энергии.

Аденозинтрифосфат (сокр. АТФ, англ. АТР) - нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. АТФ является основным переносчиком энергии в клетке.

В каждой клетке содержится очень ограниченное количество АТФ, которое обычно расходуется за считанные секунды. Для восстановления АДФ до АТФ требуется энергия, которая и получается в процессе окисления углеводов, протеина и жирных кислот в клетках.

Запасы энергии в организме.

После того, как питательные вещества абсорбируются в организме, некоторая их часть откладывается в запас как резервное топливо в виде гликогена или жира.

Гликоген также относится к классу углеводов. Запасы его в организме ограничены и хранятся в печени и мышечной ткани. Во время физических нагрузок гликоген распадается до глюкозы, и вместе с жиром и глюкозой, циркулирующей в крови, обеспечивает энергией работающие мышцы. Пропорции расходуемых питательных веществ зависят от типа и продолжительности физических упражнений.

Гликоген состоит из молекул глюкозы, соединенных в длинные цепочки. Если запасы гликогена в организме в норме, то избыточные углеводы, поступающие в организм, будут превращаться с жир.

Обычно протеин и аминокислоты не используются в организме как источники энергии. Однако при дефиците питательных веществ на фоне повышенных энергозатрат аминокислоты, содержащиеся в мышечной ткани, могут также расходоваться на энергию. Протеин, поступающий с пищей, может служить источником энергии и превращаться в жир в том случае, если потребности в нем, как в строительном материале, полностью удовлетворены.

Как расходуется энергия человека во время тренировки?

Начало тренировки

В самом начале тренировки, или когда энергозатраты резко возрастают (спринт), потребность в энергии больше, чем уровень, с которым происходит синтез АТФ с помощью окисления углеводов. Вначале углеводы «сжигаются» анаэробно (без участия кислорода), это процесс сопровождается выделением молочной кислоты (лактата). В результате освобождается некоторое количество АТФ – меньше, чем при аэробной реакции (с участием кислорода), но быстрее.

Другим «быстрым» источником энергии, идущим на синтез АТФ, является креатин фосфат. Небольшие количества этого вещества содержатся в мышечной ткани. При распаде креатин фосфата освобождается энергия, необходимая для восстановления АДФ до АТФ. Этот процесс протекает очень быстро, и запасов креатин фосфата в организме хватает лишь на 10-15 секунд «взрывной» работы, т.е. креатин фосфат является своеобразным буфером, покрывающим краткосрочный дефицит АТФ.

Начальный период тренировки

В это время в организме начинает работать аэробный метаболизм углеводов, прекращается использование креатин фосфата и образование лактата (молочной кислоты). Запасы жирных кислот мобилизуются и становятся доступными как источник энергии для работающих мышц, при этом повышается уровень восстановления АДФ до АТФ за счет окисления жиров.

Основной период тренировки

Между пятой и пятнадцатой минутой после начала тренировки в организме повышенная потребность в АТФ стабилизируется. В течение продолжительной, относительно ровной по интенсивности тренировки синтез АТФ поддерживается за счет окисления углеводов (гликогена и глюкозы) и жирных кислот. Запасы креатин фосфата в это время постепенно восстанавливаются.

Креатин является аминокислотой, которая синтезируется в печени из аргинина и глицина. Именно креатин позволяет спортсменам выдерживать высочайшие нагрузки с большей легкостью. Благодаря его действию в мышцах человека задерживается выделение молочной кислоты, которая и вызывает многочисленные мышечные боли.

С другой стороны креатин позволяет производить сильные физические нагрузки благодаря высвобождению большого количества энергии в организме.

При возрастании нагрузки (например, при беге в гору) расход АТФ увеличивается, причем, если это возрастание значительное, организм вновь переходит на анаэробное окисление углеводов с образованием лактата и использование креатин фосфата. Если организм не успевает восстанавливать уровень АТФ, может быстро наступить состояние усталости.

Какие источники энергии используются в процессе тренировки?

Углеводы являются самым важным и самым дефицитным источником энергии для работающих мышц. Они необходимы при любом виде физической активности. В организме человека углеводы хранятся в небольших количествах в виде гликогена в печени и в мышцах. Во время тренировки гликоген расходуется, и вместе с жирными кислотами и глюкозой, циркулирующей в крови, используется как источник мышечной энергии. Соотношение различных используемых источников энергии зависит от типа и продолжительности упражнений.

Несмотря на то, что в жире больше энергии, его утилизация происходит медленнее, и синтез АТФ через окисление жирных кислот поддерживается использованием углеводов и креатин фосфата.

Когда запасы углеводов истощаются, организм становится не в состоянии переносить высокие нагрузки. Таким образом, углеводы являются источником энергии, лимитирующим уровень нагрузки во время тренировки.

Факторы, ограничивающие энергозапасы организма во время тренировки

1. Источники энергии, используемые при различных типах физической активности

– слабая интенсивность (бег трусцой)

Требуемый уровень восстановления АТФ из АДФ относительно низок, и достигается окислением жиров, глюкозы и гликогена. Когда запасы гликогена исчерпаны, возрастает роль жиров как источника энергии. Поскольку жирные кислоты окисляются довольно медленно, чтобы восполнять расходуемую энергию, возможность долго продолжать подобную тренировку зависит от количества гликогена в организме.

– средняя интенсивность (быстрый бег)

Когда физическая активность достигает максимального для продолжения процессов аэробного окисления уровня, возникает потребность быстрого восстановления запасов АТФ. Углеводы становятся основным топливом для организма. Однако только окислением углеводов требуемый уровень АТФ поддерживаться не может, поэтому параллельно происходит окисление жиров и образование лактата.

– максимальная интенсивность (спринт)

Синтез АТФ поддерживается, в основном, использованием креатин фосфата и образование лактата, поскольку метаболизм окисления углеводов и жиров не может поддерживаться с такой большой скоростью.

2. Продолжительность тренировки

Тип источника энергии зависит от продолжительности тренировки. Сначала происходит выброс энергии за счет использования креатин фосфата. Затем организм переходит на преимущественное использование гликогена, что обеспечивает энергией приблизительно на 50-60% синтез АТФ.

Остальную часть энергии на синтез АТФ организм получает за счет окисления свободных жирных кислот и глюкозы. Когда запасы гликогена истощаются, основным источником энергии становятся жиры, в то же время из углеводов начинает больше использоваться глюкоза.

3. Тип тренировки

В тех видах спорта, где периоды относительно низких нагрузок сменяются резкими повышениями активности (футбол, хоккей, баскетбол), происходит чередование использования креатин фосфата (во время пиков нагрузки) и гликогена как основных источников энергии для синтеза АТФ. В течение «спокойной» фазы в организме восстанавливаются запасы креатин фосфата.

4. Тренированность организма

Чем тренированнее человек, тем выше способность организма к окислительному метаболизму (меньше гликогена превращается в лактозу) и тем экономичнее расходуются запасы энергии. То есть, тренированный человек выполняет какое-либо упражнение с меньшим расходом энергии, чем нетренированный.

5. Диета

Чем выше уровень гликогена в организме перед началом тренировки, тем позднее настанет утомление. Чтобы повысить запасы гликогена, необходимо увеличить потребление пищи, богатой углеводами. Специалисты в области спортивного питания рекомендуют придерживаться таких диет, в которых до 70% энергетической ценности составляли бы углеводы.

– рис
– паста (макаронные изделия)
– хлеб
– зерновые злаки
– корнеплоды

– введите в свой план питания больше углеводов, чтобы поддерживать энергетические запасы организма;
– за 1-4 часа до тренировки съедайте 75-100 г углеводов;
– непосредственно перед тренировкой выпейте 200-500 мл специализированного спортивного напитка (изотоника) для увеличения запасов жидкости и углеводов;
– если возможно, пейте по 100-150 мл изотоника каждые 15-20 минут во время тренировки, чтобы компенсировать расход жидкости и углеводов;
– в течение первого получаса тренировки, когда способность мышц к восстановлению максимальна, съешьте 50-100 углеводов;
– после тренировки необходимо продолжать потребление углеводов для скорейшего восстановления запасов гликогена.

Обмен веществ и энергии - это взаимосвязанные процессы, разделение которых связано только с удобством изучения. Ни один из этих процессов в отдельности не существует. При окислении энергия химических связей, содержащаяся в питательных веществах, освобождается и употребляется организмом. За счет перехода одних видов энергии в другие и поддерживаются все жизненные функции организма. Наряду с этим общее число энергии не изменяется. Соотношение между числом энергии, поступающей с пищей, и величиной энергетических затрат называется энергетическим балансом.

Сказанное возможно проиллюстрировать на примере деятельности сердца. Сердце делает огромную работу. Любой час оно выбрасывает в аорту около 300 л крови. Эта работа совершается за счет сокращения сердечной мускулы, в которой наряду с этим протекают интенсивные окислительные процессы. Благодаря освобождающейся энергии обеспечивается механическое сокращение мышц, и в конечном итоге вся энергия переходит в тепловую, которая рассеивается в организме и отдается им в окружающее пространство. Аналогичные процессы идут в каждом органе человеческого тела. И в каждом случае в конечном счете химическая, электрическая, механическая и другие виды энергии трансформируются в тепловую и рассеиваются во окружающую среду. Количество энергии, расходуемое на исполнение физической работы, определяют как коэффициент нужного действия (кпд). Его средняя величина - 20-25%, у спортсменов КПД выше. Установлено, что 1 г белка при окислении выделяет 4,1 ккал, 1 г жира - 9,3, air углеводов - 4,1 ккал. Зная содержание белков, жиров и углеводов в пищевых продуктах (табл. 1), возможно установить их калорийность, либо энергетическую цена.

Мышечная деятельность, деятельный двигательный режим, физические упражнения и спорт связаны со большим расходом энергии. В некоторых случаях он может быть около 5 000 какое количество, а в дни интенсивных и объемных тренировок у спортсменов и того более. Такое повышение энергозатрат нужно учитывать при составлении пищевого рациона. В то время, когда в пище присутствует много белка, существенно удлиняется процесс ее переваривания (от двух до четырех часов). За один раз целесообразно принимать до 70 г белка, поскольку излишки его начинают преобразовываться в жир. А представители некоторых видов спорта (к примеру, гимнасты, бодибилдеры и др.) всячески избегают накопления лишнего жира и предпочитают энергию получать из растительной пищи (к примеру, фруктовая пища связана с образованием стремительных углеводов).

Питательные вещества возможно замещать, учитывая их калоричес-кую ценность. Вправду, с энергетической точки зрения 1 г углевода эквивалентен (изодинамичен) 1 г белка, поскольку у них однообразный калорический коэффициент (4,1 ккал), а 1 г белка либо углевода эквивалентен 0,44 г жира (калорический коэффициент жира 9,3 ккал). Из этого следует, что человек, дневный расход энергии которого 3 000 ккал, может всецело удовлетворить энергетические потребности организма, потребляя в день 732 г углеводов. Но для организма ответственна не только неспециализированная калорийность пищи. В случае если человек достаточно долго потребляет лишь жиры либо белки, либо углеводы, в его организме появляются глубокие трансформации в обмене веществ. Наряду с этим нарушаются пластические процессы в протоплазме клеток, отмечается сдвиг азотистого равновесия, образуются и накапливаются токсические продукты.

Таблица 1. Состав наиболее серьёзных пищевых продуктов (в % сырого вещества)

Говядина средняя жирная

Желток куриного яйца

Белок куриного яйца

Для обычной жизнедеятельности организм должен получать оптимальное количество полноценных белков, жиров, углеводов, минеральных солей и витаминов, каковые находятся в разных пищевых продуктах. Уровень качества пищевых продуктов определяется их физиологической ценностью. Наиболее полезными пищевыми продуктами являются молоко, масло, творог, яйца, мясо, рыба, зерновые, фрукты, овощи, сахар.

Люди различных профессий затрачивают при своей деятельности различное количество энергии. К примеру, занимающийся интеллектуальным трудом в сутки тратит менее 3000 громадных калорий. Человек, занимающийся тяжелым физическим трудом, за сутки затрачивает в 2 раза больше энергии (табл. 2).

Энергетический расход (ккал/сут) для лиц разных категорий труда

Тяжелый физический Механизированный Умственный

Бессчётные изучения продемонстрировали, что мужчине среднего возраста, занимающемуся и умственным, и физическим трудом в течение 8-10 ч, нужно потреблять в сутки 118 г белков, 56 г жиров, 500 г углеводов. В пересчете это образовывает около 3 000 ккал. Для детей, людей пожилого возраста, для лиц занимающихся тяжелым физическим трудом, требуются личные, научно обоснованные нормы питания. Пищевой рацион составляется с учетом пола, возраста человека и характера его деятельности. Громадное значение имеет режим питания. В зависимости от возраста, рода работы и других параметров устанавливается 3-6-разовое питание в день с определенным процентным содержанием пищи на любой прием.

Так, дабы сохранять энергетический баланс, поддерживать обычную массу тела, снабжать высокую работоспособность и профилактику разного рода патологических явлений в организме, нужно при полноценном питании расширить расход энергии за счет увеличения двигательной активности, что значительно стимулирует обменные процессы.

Наиболее значимая физиологическая константа организма - то предельное число энергии, которое человек расходует в состоянии полного спокойствия. Эта константа называется основным обменом. Нервная система, сердце, дыхательная мускулатура, почки, печень и другие органы непрерывно функционируют и потребляют определенное количество энергии. Сумма этих затрат энергии и образовывает величину основного обмена.

Основной обмен человека определяют при соблюдении следующих условий: при полном физическом и психическом покое; в положении лежа; в утренние часы; натощак, т.е. через 14ч по окончании последнего приема пищи; при температуре комфорта (20°С). Нарушение любого из этих условий ведет к отклонению обмена веществ в сторону увеличения. За 1 ч минимальные энергетические затраты организма взрослого человека составляют в среднем 1 ккал на 1 кг массы тела.

Основной обмен есть личной константой и зависит от пола, возраста, массы и роста человека. У здорового человека он может держаться на постоянном уровне в течение ряда лет. В детском возрасте величина основного обмена существенно выше, чем в пожилом. Деятельное состояние приводит к заметной интенсификации обмена веществ. Обмен веществ при этих условиях называется рабочим обменом. В случае если основной обмен взрослого человека равен 1700- 1800 ккал, то рабочий обмен в 2-3 раза выше. Так, основной обмен есть исходным фоновым уровнем потребления энергии. Резкое изменение основного обмена возможно серьёзным диагностическим показателем переутомления, перенапряжения и недовосстановления либо заболевания.

Основными источниками энергии для организма являются углеводы, белки, минеральные соли, жиры, витамины. Они обеспечивают его нормальную деятельность, позволяют организму функционировать без особых проблем. Питательные вещества - это источники энергии в организме человека. Кроме того, они выступают в качестве строительного материала, способствуют росту и воспроизводству новых клеток, появляющихся на месте отмирающих. В том виде, в котором они употребляются в пищу, их невозможно всосать и использовать организмом. Только вода, а также витамины и минеральные соли усваиваются и всасываются в том виде, в котором они поступают.

Основными источниками энергии для организма являются белки, углеводы, жиры. В пищеварительном тракте они подвергаются не только физическим воздействиям (перетираются и измельчаются), но и химическим превращениям, происходящим под воздействием ферментов, которые находятся в соке специальных пищеварительных желез.

Строение белков

В растениях и животных есть определенное вещество, являющееся основой жизни. Этим соединением является протеин. Обнаружены белковые тела были биохимиком Жераром Мюльдером в 1838 году. Именно им была сформулирована теория протеина. Слово «протеин» с греческого языка означает «занимающий первое место». Примерно половину сухого веса любого организма составляют именно белки. У вирусов такое содержание колеблется в диапазоне 45-95 процентов.

Рассуждая о том, что является главным источником энергии в организме, нельзя оставить без внимания белковые молекулы. Они занимают особое место по биологическим функциям и значению.

Функции и расположение в организме

Около 30 % белковых соединений располагается в мышцах, порядка 20 % обнаружено в сухожилиях и в костях, а 10 % содержится в коже. Максимально значимыми для организмов являются ферменты, управляющие обменными химическими процессами: перевариванием пищи, активностью желез внутренней секреции, работой мозга, мышечной деятельностью. Даже в небольших бактериях содержатся сотни ферментов.

Протеины - это обязательная часть живых клеток. В них содержится водород, углерод, азот, сера, кислород, а в некоторых есть и фосфор. Обязательным химическим элементом, содержащимся в белковых молекулах, является азот. Именно поэтому эти органические вещества называют азотсодержащими соединениями.

Свойства и превращение белков в организме

Попадая в пищеварительный тракт, они расщепляются на аминокислоты, которые всасываются в кровь и используются для синтеза специфичного для организма пептида, затем окисляются до воды и углекислого газа. При повышении температуры происходит свертывание белковой молекулы. Известны такие молекулы, которые способны растворяться в воде только при нагревании. К примеру, такими свойствами обладает желатин.

После поглощения пища сначала оказывается в ротовой полости, потом она движется по пищеводу, попадает в желудок. В нем находится кислая реакция среды, которая обеспечивается соляной кислотой. В желудочном соке есть который расщепляет белковые молекулы на альбумозы и пептоны. Это вещество активно только в кислой среде. Пища, которая поступила в желудок, способна задерживаться в нем 3-10 часов, в зависимости от ее агрегатного состояния и характера. Поджелудочный сок обладает щелочной реакцией, в нем есть ферменты, способные расщеплять жиры, углеводы, белки.

Среди его основных ферментов выделяют трипсин, который в соке поджелудочной железы располагается в виде трипсиногена. Он не способен расщеплять белки, но при соприкосновении с кишечным соком превращается в активное вещество - энтерокиназу. Трипсин расщепляет белковые соединения до аминокислот. Заканчивается переработка пищи в тонкой кишке. Если в двенадцатиперстное кишке и в желудке жиры, углеводы, белки почти полностью распадаются, то в тонкой кишке происходит полное расщепление питательных веществ, всасывание в кровь продуктов реакции. Осуществляется процесс через капилляры, каждый из которых подходит к ворсинкам, располагающимся на стенке тонкой кишки.

Обмен белков

После того как белок полностью распадется на аминокислоты в пищеварительном тракте, они всасываются в кровь. Также в нее попадает и незначительное количество полипептидов. Из аминокислотных остатков в организме живого существа синтезируется специфичный белок, в котором нуждается человек или животное. Процесс образования новых белковых молекул протекает в живом организме непрерывно, поскольку отмирающие клетки кожи, крови, кишечника, слизистой оболочки удаляются, а на их месте образуются молодые клетки.

Для того чтобы осуществлялся синтез белков, необходимо, чтобы они вместе с пищей поступали в пищеварительный тракт. Если полипептид вводится в кровь, минуя пищеварительный тракт, человеческий организм не имеет возможности его использовать. Подобный процесс может негативно отражаться на состоянии человеческого организма, вызывать многочисленные осложнения: повышение температуры, паралич дыхания, сбой сердечной деятельности, общие судороги.

Белки нельзя заменить иными пищевыми веществами, поскольку для их синтеза внутри организма необходимы аминокислоты. Недостаточное количество этих веществ приводит к задержке либо приостановлению роста.

Сахариды

Начнем с того, что углеводы - главный источник энергии организма. Они представляют собой одну из главных групп органических соединений, в которых нуждается наш организм. Этот источник энергии живых организмов является первичным продуктом фотосинтеза. Содержание в живой растительной клетке углеводов может колебаться в диапазоне 1-2 процентов, а в некоторых ситуациях этот показатель достигает 85-90 процентов.

Основными источниками энергии живых организмов являются моносахариды: глюкоза, фруктоза, рибоза.

В составе углеводов есть атомы кислорода, водорода, углерода. К примеру, глюкоза - источник энергии в организме, имеет формулу С6Н12О6. Существует подразделение всех углеводов (по строению) на простые и сложные соединения: моно- и полисахариды. По количеству углеродных атомов моносахариды делят на несколько групп:

  • триозы;
  • тетрозы;
  • пентозы;
  • гексозы;
  • гептозы.

Моносахариды, которые имеют в составе пять и более углеродных атомов, при растворении в воде могут образовывать кольцевую структуру.

Основным источником энергии в организме является глюкоза. Дезоксирибоза и рибоза являются углеводами, имеющими особое значение для нуклеиновых кислот и АТФ.

Глюкоза - это главный источник энергии в организме. С процессами превращения моносахаридов напрямую связан биосинтез многих органических соединений, а также процесс выведения из него ядовитых соединений, которые попадают извне либо образуются в результате распада белковых молекул.

Отличительные особенности дисахаридов

Моносахарид и дисахарид - это основной источник энергии для организма. При объединении моносахаридов происходит отщепление, а продуктом взаимодействия выступает дисахарид.

Среди типичных представителей данной группы можно отметить сахарозу (тростниковый сахар), мальтозу (солодовый сахар), лактозу (молочный сахар).

Такой источник энергии для организма, как дисахариды, заслуживает детального изучения. Они отлично растворяются в воде, обладают сладким вкусом. Чрезмерное употребление сахарозы приводит к появлению серьезных сбоев в организме, поэтому так важно соблюдать нормы.

Полисахариды

Отличным источником энергии для организма служат такие вещества, как целлюлоза, гликоген, крахмал.

В первую очередь любой из них можно рассматривать как источник энергии для человеческого организма. В случае их ферментативного расщепления и распада происходит выделение большого количества энергии, используемой живой клеткой.

Этот источник энергии для организма выполняет и иные важные функции. Например, хитин, целлюлоза применяются в качестве строительного материала. Полисахариды отлично подходят организму в качестве запасных соединений, поскольку они не растворяются в воде, не оказывают химического и осмотического действия на клетку. Подобные свойства позволяют им сохраняться длительное время в живой клетке. В обезвоженном виде полисахариды способны увеличивать массу запасаемых продуктов благодаря экономии объема.

Такой источник энергии для организма способен противостоять болезнетворным бактериям, попадающим в организм вместе с пищей. В случае необходимости при гидролизе происходит превращение запасных полисахаридов в простые сахара.

Обмен углеводов

Как ведет себя главный источник энергии в организме? Углеводы поступают в большей степени в виде полисахаридов, к примеру, в виде крахмала. В результате гидролиза из него образуется глюкоза. Моносахарид всасывается в кровь, благодаря нескольким промежуточным реакциям он расщепляется на углекислый газ и воду. После окончательного окисления происходит высвобождение энергии, которую использует организм.

Процесс расщепления и крахмала протекает непосредственно в полости рта, в качестве катализатора реакции выступает фермент птиалин. В тонких кишках углеводы распадаются до моносахаридов. В кровь они всасываются в основном в виде глюкозы. Процесс протекает в верхних отделах кишечника, а вот в нижних углеводов почти нет. Вместе с кровью сахариды попадают в воротную вену, доходят до печени. В том случае, когда концентрация сахара в человеческой крови составляет 0,1 %, углеводы проходят через печень, оказываются в общем кровотоке.

Необходимо поддерживать постоянное количество сахара в крови около 0,1 %. При избыточном попадании в кровь сахаридов, излишки накапливаются в печени. Подобный процесс сопровождается резким падением сахара в крови.

Изменение уровня сахара в организме

Если в пище присутствует крахмал, это не приводит к масштабным изменениям сахара в крови, поскольку процесс гидролиза полисахарида протекает достаточно долго. Если доза сахара оставляет порядка 15-200 граммов, наблюдается резкое повышение его содержания в крови. Этот процесс называют алиментарной или пищевой гипергликемией. Избыточное количество сахара выводится почками, поэтому в моче содержится глюкоза.

Из организма почки начинают выводить сахар в том случае, если его уровень в крови достигает диапазона 0,15-0,18 %. Подобное явление возникает при единовременном употреблении существенного количества сахара, достаточно быстро проходит, не приводя к серьезным нарушениям обменных процессов в организме.

Если нарушается внутрисекреторная работа поджелудочной железы, возникает такое заболевание, как сахарный диабет. Оно сопровождается существенным увеличением количества сахара в крови, что приводит к потере печенью способности удерживать глюкозу, в итоге сахар выводится с мочой из организма.

Существенное количество гликогена может откладываться в мышцах, здесь он востребован при осуществлении химических реакций, происходящих в ходе сокращений мышц.

О важности глюкозы

Значение глюкозы для живого организма не ограничивается только энергетической функцией. Потребность в глюкозе возрастает при выполнении тяжелой физической работы. Удовлетворяется такая потребность путем расщепления в печени гликогена на глюкозу, которая поступает в кровь.

Данный моносахарид есть и в составе протоплазмы клеток, поэтому требуется для формирования новых клеток, особенно актуальна глюкоза в процессе роста. Особое значение имеет данный моносахарид для полноценной деятельности центральной нервной системы. Как только концентрация сахара в крови понижается до показателя 0,04 %, возникают судороги, человек теряет сознание. Это является прямым подтверждением того, что понижение сахара в крови вызывает мгновенное нарушение деятельности центральной нервной системы. Если пациенту вводят глюкозу в кровь либо предлагают сладкую пищу, все нарушения пропадают. При длительном понижении сахара в крови развивается гипогликемия. Она приводит к серьезным нарушениям деятельности организма, которые могу вызвать его смерть.

Коротко о жирах

В качестве еще одного источника энергии для живого организма можно рассматривать жиры. В их составе присутствуют углерод, кислород, водород. Жиры имеют сложное химическое строение, представляют собой соединения многоатомного спирта глицерина и жирных карбоновых кислот.

В ходе пищеварительных процессов происходит расщепление жира на составные части, из которых он был получен. Именно жиры являются составной частью протоплазмы, содержатся в тканях, органах, клетках живого организма. Они по праву считаются отличным источником энергии. Расщепление этих органических соединений начинается в желудке. В желудочном соке содержится липаза, которая превращает молекулы жира в глицерин и карбоновую кислоту.

Глицерин отлично всасывается, так как имеет хорошую растворимость в воде. Для растворения кислот используется желчь. Под ее влиянием эффективность воздействия на жир липазы возрастает до 15-20 раз. Из желудка пища движется в двенадцатиперстную кишку, где под действием сока происходит ее дальнейшее расщепление до продуктов, которые способны всасываться в лимфу и кровь.

Далее пищевая кашица движется по пищеварительному тракту, попадает в тонкий кишечник. Здесь происходит ее полное расщепление под влиянием кишечного сока, а также всасывание. В отличие от продуктов расщепления белков и углеводов, вещества, получаемые при гидролизе жиров, всасываются в лимфу. Глицерин и мыла после прохождения через клетки слизистой оболочки кишечника опять соединяются, формируют жир.

Подводя общий итог, отметим, что основными источниками энергии для организма человека и животных выступают белки, жиры, углеводы. Именно благодаря углеводному, белковому обмену, сопровождающемуся образованием дополнительной энергии, функционирует живой организм. Поэтому не стоит долго сидеть на диетах, ограничивая себя в каком-то конкретном микроэлементе или веществе, иначе это может отрицательно сказаться на здоровье и самочувствии.

Публикации по теме