Фармакокинетика - общая фармакология. Элементы фармакокинетики Этапы движения лекарств в организме


Фармакокинетика - раздел клинической фармакологии, изучающий поведение лекарственного средства в организме: поступление, всасывание, распределение, связывание, биотрансформация, выведение (от греч.pharmakon- лекарство, kineo- двигатель).
Для клинической анестезиологии и интенсивной терапии важнейший фар- макокинетический принцип - взаимоотношение между дозой лекарственного средства, концентрацией его в тканях и продолжительностью действия. Следует помнить, что фармакокинетические характеристики препаратов, изученные у здоровых добровольцев, могут значительно отличаться от таковых у больных с тяжелыми заболеваниями (особенно с патологией почек и печени) и значительно варьировать в зависимости от возраста, волемического и нутритивного статуса, массы скелетной мускулатуры.
Зависимость между дозой лекарства и его эффектом была известна еще со времен Парацельса (XVI век). Однако современное развитие фармакокинетики стало возможным лишь благодаря внедрению высокочувствительных методов химического анализа - газовой и газожидкостной хроматографии, радиоиммунологической, ферментно-химической методологии, а также математического моделирования фармакокинетических процессов.
Знание фармакокинетики позволяет определить дозы, оптимальный путь введения, режим дозирования и продолжительность действия лекарственных средств. Эта информация особенно важна у пациентов с сопутствующими заболеваниями (особенно тех органов, которые участвуют в биотрансформации препаратов), а также при одновременном применении различных средств, что характерно для анестезиологической и реаниматологической практики.
К фармакокинетическим факторам, определяющим поведение лекарственных средств в организме, относят абсорбцию, распределение по органам и тканям и элиминацию путем биотрансформации и экскреции.
АБСОРБЦИЯ
Абсорбция - всасывание лекарственного средства из места введения в крово-ток, что возможно энтеральным и парентеральным путем.
Энтеральный путь
Энтеральный путь включает введение лекарственного средства внутрь, сублингвально, буккально и ректально. На биодоступность препарата при введении внутрь влияют растворимость и концентрация действующего вещества в лекарственной форме, состояние перфузии, рН и площадь поверхности всасывания, секреторная и моторная функции ЖКТ, интенсивность метаболизма в печени (так называемый эффект первичного пассажа), взаимодействие с другими лекарственными средствами. Абсорбируется, главным образом, неионизированная фракция препарата, поэтому в кислой среде лучше всасываются лекарственные средства-кислоты, а в щелочной - лекарственные средства-основания.
Первичный пассаж
Первичный пассаж, или пресистемный метаболизм, - биотрансформация лекарственного средства в результате поступления в печень через портальный кровоток после всасывания в желудке или кишечнике. Высокая степень пресистем- ного метаболизма характерна для антагонистов кальция, |3-адреноблокаторов, нитратов, ингибиторов ангиотензинпревращающего фермента, ацетилсалициловой кислоты, изопротеренола1", папаверина, пентазоцина", пентоксифиллина.
Препарат из сосудов полости рта поступает в верхнюю полую вену, поэтому сублингвальное и буккальное введение лекарственного средства исключает эффект первичного пассажа, поскольку действующее вещество в этом случае минует печень. Венозная кровь из прямой кишки поступает в нижнюю полую вену, также минуя печень. Следовательно, при ректальном введении биодоступность препарата выше, чем при пероральном введении. Основной недостаток ректального пути введения (кроме дискомфорта и раздражения) - индивидуальные колебания скорости и степени всасывания.
Парентеральный путь
Парентеральные пути введения, при которых лекарственное средство минует пищеварительный тракт, включают чрескожный; подкожный; внутривенный; внутриартериальный; интратекальный; перидуральный; местный (внутрибрю- шинный, внутриплевральный, в полость абсцесса, субконъюнктивальный, интра- назальный и т.д.).
Чрескожный путь введения редко применяют для получения системного действия лекарственного средства. Иногда с этой целью назначают специальные трансдермальные формы, регулирующие всасывание препарата. Таким способом, в частности, назначают нитроглицерин, нестероидные противовоспалительные средства (НПВС), наркотические анальгетики. Очень широко в анестезиологиче-ской практике известны мази, содержащие местные анестетики, но не для систем-ного, а для местного применения.
При подкожном и внутримышечном введении скорость всасывания лекарственных средств будет зависеть, главным образом, от васкуляризации тканей и водорастворимости применяемого препарата.
При внутривенном или внутриартериальном введении этап всасывания исключается из фармакокинетического процесса, лекарственное средство полностью и непосредственно поступает в кровоток. При ингаляционном пути введения (ингаляционные анестетики) попадание "екарственного средства в кровоток будет зависеть от трех основных факторов: его Епыхаемой (ингалируемой) концентрации, альвеолярной вентиляции и интенсивности поглощения (потребления) анестетика в крови. Существует эффект первого прохождения лекарственного средства через легкие, заключающийся в захвате -ипофильных аминов-оснований (лидокаин, пропранолол, фентанил) легочной тканью. Этот эффект может влиять на пиковую концентрацию препарата в артериальной крови. Легкие способны впоследствии высвобождать связанные препараты в системный кровоток.
Факторы, влияющие на абсорбцию ингаляционных анестетиков:
о- факторы, связанные с наркозным аппаратом, - подаваемая концентрация анестетика, мертвое пространство аппарата, растворимость препарата в конструкциях наркозного аппарата (растворимость в пластических материалах и резине);
альвеолярная концентрация;
о факторы, определяющие поступление анестетика в кровь, - сердечный выброс и системный кровоток, растворимость анестетика в крови, альвеолярный кровоток и вентиляция (вентиляционно-перфузионное отношение), потребление анестетика тканями (градиент концентрации анестетика в альвеолярном газе и венозной крови).
Основные механизмы всасывания (абсорбции) лекарственных средств:
пассивная диффузия, характерная для липофильных лекарственных средств;
о активный транспорт, специфичен для некоторых лекарственных средств и
соединений: аминокислот, Сахаров, витаминов, метилдопы;
о фильтрация, характерная для водорастворимых лекарственных средств с низкой молекулярной массой; играет незначительную роль в абсорбционных процессах;
пиноцитоз, способный обеспечить абсорбцию лишь некоторых макромоле- кулярных соединений.
Показатели абсорбции:
полнота всасывания - количество (%) всасываемого вещества;
время достижения максимальной концентрации (Тш|х);
константа скорости абсорбции (Ка), характеризующая скорость поступления лекарственного средства в кровь из места введения;
период полуабсорбции (Т, величине T 1 / 2 -Css и обратно пропорциональна объему распределения:

где t - интервал времени.

4.2. КОНТРОЛЬ КОНЦЕНТРАЦИИ ЛЕКАРСТВЕННЫХ СРЕДСТВ В КЛИНИЧЕСКОЙ ПРАКТИКЕ

Представление о фармакокинетических параметрах ЛС позволяет предсказать концентрацию ЛС в плазме в любой момент времени, но в ряде случаев полученные расчеты могут оказаться неточными. Например, больной неаккуратно принимал назначенное ЛС (пропуски приема, ошибки в дозах) или существуют факторы, влияющие на концентрацию ЛС, значение которых не поддается математическому моделированию (одновременный прием нескольких препаратов, различные заболевания, способные изменять показатели фармакокинетики). Из-за этого часто приходится прибегать к экспериментальному исследованию концентрации ЛС в крови.

Необходимость экспериментальных исследований также возникает при внедрении в клиническую практику новых ЛС или их форм, а также при исследовании биоэквивалентности препаратов различных производителей.

В клинической практике к измерению концентрации ЛС прибегают только в некоторых случаях.

Когда концентрация в плазме четко коррелирует с клиническим эффектом ЛС, но его эффективность трудно оценить клинически. Например, если препарат назначен для профилактики редких проявлений заболевания (эпилептический припадок или пароксизм аритмии). При этом более целесообразно однократно оценить уровень концентрации ЛС, чем ожидать клинического эффекта или неудачи лечения неопределенно

долгое время. Иногда оценка клинического эффекта может быть затруднена из-за неадекватного контакта с больным.

Когда трудно отличить клиническое и нежелательное действие одного и того же препарата. Например, дигоксин, назначенный для профилактики аритмий, при превышении терапевтической концентрации сам способен вызвать у больного аритмию. В этом случае тактика дальнейшего лечения (отмена дигоксина или увеличение его дозы для достижения большего противоаритмиче-ского эффекта) полностью зависит от концентрации препарата в крови.

При наличии у препарата потенциально опасных побочных эффектов (аминогликозиды, цитостатики).

При отравлениях и передозировке ЛС (для оценки тяжести и выбора тактики лечения).

При нарушениях, связанных с метаболизмом или элиминацией ЛС [печеночная или хроническая почечная недостаточность

(ХПН)].

Необходимость в исследовании концентрации ЛС отсутствует в следующих ситуациях:

В тех случаях, когда ЛС представляется вполне безопасным и обладает большим терапевтическим диапазоном;

Если эффект ЛС легко поддается клинической оценке;

Если эффект ЛС мало зависит от концентрации и /или продолжается длительное время после того, как препарат полностью выводится из плазмы [гормональные препараты, некоторые средства, используемые для лечения рака, ингибиторы моноаминоксидазы (МАО) и ацетилхолинэстеразы];

Если действие ЛС происходит путем образования активных метаболитов;

У ЛС, для действия которых более важна их тканевая концентрация (некоторые антибактериальные препараты).

В настоящее время существует возможность оценить эффективность лечения исходя из концентрации ЛС в моче (антибактериальные препараты при мочевой инфекции), мокроте, а также определить концентрацию ЛС непосредственно в тканях и органах человека радионуклидными методами. Однако эти способы исследования фармакокинетики используют только в научных исследованиях и пока не вводят в клиническую практику.

4.3. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ВСАСЫВАНИЕ,

РАСПРЕДЕЛЕНИЕ И ВЫВЕДЕНИЕ ЛЕКАРСТВЕННЫХ

СРЕДСТВ

Общая скорость всасывания зависит от морфологической структуры органа, в который вводят ЛС, и прежде всего от величины абсорбирующей поверхности. Наибольшую абсорбирующую поверхность имеет ЖКТ благодаря ворсинкам (около 120 м 2), несколько меньшую - легкие (70-100 м 2). Кожа имеет малую абсорбирующую поверхность (в среднем 1,73 м 2), кроме того, всасывание ЛС через кожу затруднено из-за особенностей ее анатомического строения.

Для большинства препаратов проникновение в область рецепторов связано с прохождением нескольких барьеров:

Слизистую оболочку кишечника (или полости рта при сублинг-вальном приеме), эпителий кожи (при наружном применении препарата), эпителий бронхов (при ингаляциях);

Стенку капилляров 1 ;

Специфические капиллярные барьеры 2:

Между системным кровотоком и системой кровоснабжения головного мозга (гематоэнцефалический барьер);

Между организмом матери и плода (плацента 3).

Некоторые препараты взаимодействуют со своими рецепторами на поверхности клеток, другие должны преодолеть клеточную мембрану (глюкокортикоиды), мембрану ядра (фторхинолоны) или мембраны клеточных органелл (макролиды).

Состояние сердечно-сосудистой системы - определяющий фактор в распределении ЛС. Так, при шоке или сердечной недостаточности кровоснабжение большинства органов уменьшается, что ведет

1 Капилляры - мельчайшие кровеносные сосуды, через которые главным образом и происходят обмен веществ и поступление ЛС в ткани и органы человека. Препараты попадают в системный кровоток через капиллярную сеть кишечника, бронхов (ингаляционный путь введения), полости рта (при сублингвальном применении), кожи (трансдермальный путь введения) и подкожной жировой клетчатки (внутримышечный путь введения). Для достижения органа-мишени ЛС должно вновь преодолеть стенку капилляра.

2 Эти барьеры образованы двойной системой капилляров, например кровь, поступающая в головной мозг, распределяется по капиллярам, из которых кислород и питательные вещества не поступают напрямую к клеткам, а адсорбируются в другую (внутреннюю) капиллярную систему.

3 Со способностью ЛС проникать через плаценту связано, как правило, нежелательное действие препаратов на плод.

к снижению почечного и печеночного клиренса ЛС. В результате концентрация ЛС в плазме крови, особенно после внутривенного введения, будет возрастать.

ЛС способны преодолевать клеточные оболочки, не нарушая их целостности, с помощью ряда механизмов.

Диффузия - пассивный транспорт ЛС в ткани под воздействием градиента концентраций. Скорость диффузии всегда пропорциональна разнице между концентрациями ЛС снаружи и внутри клетки и подчиняется законам кинетики первого порядка. Процесс диффузии не требует энергетических затрат. Однако преодолеть клеточные оболочки, состоящие из гидрофобных липидов, способны только жирорастворимые ЛС.

Фильтрация позволяет ЛС поступать в организм через особые водные каналы в эпителиальных оболочках. Путем фильтрации в организм поступают только некоторые водорастворимые ЛС.

Активный транспорт - перемещение некоторых ЛС в организме независимо от градиента концентраций (при этом используется энергия АТФ). Активный транспорт может происходить быстрее, чем диффузия, но это потенциально насыщаемый механизм: молекулы сходного химического строения конкурируют между собой за ограниченное число молекул-переносчиков. С использованием этого механизма в организм поступают только те ЛС, которые по химическому строению близки к естественным веществам (препараты железа, фторурацил).

Для абсорбции и транспорта ЛС в организме имеют значение растворимость, химическая структура и молекулярная масса ЛС. Переход препарата через клеточную оболочку определяется в первую очередь его растворимостью в липидах. Растворимость в жирах - свойство всей молекулы в целом, хотя ионизация молекулы ЛС способна уменьшать ее липофильность. Растворимость в воде увеличивается при наличии в ЛС спиртовой группы (-ОН), амидной группы (-CO-NH 2), карбоксильной группы (-СООН), конъюгатов с глюкуроновым радикалом и конъюгатов с сульфатным радикалом. Растворимость в липидах увеличивается при наличии в молекуле ЛС бензольного кольца, стероидного ядра, галогеновых групп (-Вг, -С1, -F). Способность молекулы к ионизации характеризуется константой ионизации (Ка), которую выражают в виде отрицательного логарифма (рКа). При рН раствора, равном рКа, 50% вещества находится в ионизированном состоянии.

Особенности выведения ЛС также могут быть связаны со степенью ионизации: рН мочи может варьировать в значительных пределах

(от 4,6 до 8,2), обратное всасывание ЛС из первичной мочи 1 в значительной степени зависит от ее рН. В частности, ацетилсалициловая кислота становится более ионизированной при щелочном рН мочи и в этом случае почти не подвергается реабсорбции. Это обстоятельство используют при лечении передозировки салицилатами: в этом случае назначают ЛС, увеличивающие рН мочи, что способствует более быстрому выделению салицилатов.

Некоторые ЛС (например, дигоксин и хлорамфеникол) вообще не имеют ионизируемых групп, и их транспорт не зависит от рН среды, другие (гепарин натрия) обладают химической структурой с настолько выраженной ионизацией, что остаются ионизированными практически при любых значениях рН. Некоторые патологические состояния способны изменять внутреннюю среду организма, например среда в полостях абсцессов кислая, что может повлиять на эффективность антибактериальных препаратов с высокой гидро-фильностью.

4.4. ПУТИ ВВЕДЕНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Стремление влиять на параметры кинетики препаратов отразилось в многообразии путей введения ЛС. Применяя различные пути введения, можно:

Обеспечить разную скорость развития эффекта и его различную продолжительность у одного и того же ЛС;

Значительно увеличить концентрацию ЛС в органе-мишени (например, при применении бронхорасширяющих препаратов в ингаляциях);

Увеличить системную концентрацию ЛС при внутривенном введении или ректальном применении по сравнению с приемом внутрь (для ЛС с эффектом первого прохождения через печень);

Уменьшить выраженность НЛР (наружное применение глю-кокортикоидов, парентеральное введение ЛС, раздражающих слизистую оболочку желудка).

1 В структурной единице почек - нефроне - первоначально образуется большое количество так называемой первичной мочи (до 150 л/сут), состав которой (за исключением белков) близок к составу плазмы крови. Большая часть этой жидкости с растворенными в ней веществами подвергается обратному всасыванию (реабсорбция) в канальцах нефрона.

Энтеральное введение ЛС. К энтеральному пути введения ЛС относится прием препаратов внутрь, буккальный и ректальный путь введения. При этом объем и скорость всасывания ЛС из ЖКТ зависит, с одной стороны, от физико-химических свойств препаратов (водо- и жирорастворимости, константы диссоциации, молекулярной массы), особенностей лекарственной формы (препараты с медленным высвобождением), а с другой - от функционального состояния ЖКТ (рН и присутствия пищеварительных ферментов в просвете кишечника, скорости перемещения пищи, кровотока в стенке кишечника). Кроме того, некоторым ЛС свойствен метаболизм в стенке кишечника или под действием кишечной микрофлоры. Некоторые ЛС при одновременном назначении могут взаимодействовать в ЖКТ между собой (инактивация одного ЛС другим или конкуренция за всасывание).

Прием препаратов внутрь. Преимущества этого пути введения заключаются в простоте и удобстве для пациента. Обычно антибактериальные препараты рекомендуют принимать до еды (абсорбция многих из них зависит от пищи), гипогликемические средства назначают до еды или во время еды, препараты, раздражающие слизистую оболочку желудка (НПВС), - после еды.

Недостатки приема ЛС внутрь:

Абсорбция многих ЛС зависит от приема пищи, функционального состояния ЖКТ и множества других факторов, которые на практике с трудом поддаются учету;

Не все ЛС способны хорошо всасываться в ЖКТ;

Некоторые ЛС (препараты инсулина, антибактериальные препараты пенициллинового ряда) разрушаются в желудке;

Часть ЛС оказывает нежелательные действия на ЖКТ - вызывают изъязвления (НПВС, доксициклин, калия хлорид) или отрицательно влияют на моторику желудка и кишечника (некоторые антациды);

Наконец, ЛС нельзя назначать внутрь больным в бессознательном состоянии и пациентам с нарушением глотания.

На абсорбцию (всасывание) ЛС при приеме внутрь влияют следующие факторы.

Моторика ЖКТ, от которой зависит продолжительность пребывания ЛС в его различных отделах. Так, у пациентов с мигренью моторика желудка замедлена, его опорожнение наступает позже, чем в норме. В результате этого при приеме НПВС у этих больных снижается абсорбция, а эффекты НПВС становятся отсроченными.

Эту проблему можно преодолеть, если одновременно с НПВС назначить средство, повышающее моторику желудка, - метоклопрамид.

Кислотность в желудке способна изменяться в довольно широких пределах, влияя на абсорбцию ЛС. Например, слабые органические основания (эритромицин, хинидин, теофиллин) в кислой среде подвергаются ионизации, препятствующей их всасыванию. Такие ЛС лучше принимать натощак и /или запивать слабощелочными растворами.

У больных с высокой кислотностью желудочного сока замедляется опорожнение желудка, что также влияет на всасывание препаратов. В этом случае перед приемом ЛС можно назначать вещества, нейтрализующие избыточную кислотность (молоко, минеральные воды). При антацидном (сниженная кислотность) состоянии опорожнение желудка наступает быстро и ЛС быстрее поступают в тонкую кишку.

Ферменты в просвете кишечника. В кишечнике находится большое количество ферментов с высокой липолитической и протеолити-ческой активностью. Ряд ЛС белковой и полипептидной природы, гормональные препараты (десмопрессин, кортикотропин, инсулины, прогестерон, тестостерон) в этих условиях почти полностью дезактивируются. Компоненты желчи способствуют растворению липофиль-ных препаратов, а также растворяют оболочки таблеток и капсул с кишечно-растворимым покрытием.

Пища. При одновременном приеме пищи и ЛС адсорбция препаратов может замедляться или ускоряться. Например, яйца уменьшают всасывание железа; молоко, богатое ионами кальция, инактивиру-ет тетрациклин и фторхинолоны, образуя с их молекулами хелат-ные комплексы. Абсорбция изониазида, леводопы и эритромицина уменьшается независимо от характера пищи. При приеме синтетических пенициллинов после еды их всасывание замедляется, а всасывание пропранолола, метопролола и гидралазина, напротив, ускоряется (но абсорбция и биодоступность остаются прежними). Всасывание гризеофульвина увеличивается в несколько раз при приеме жирной пищи.

Некоторые ЛС, особенно при длительном применении, могут нарушать всасывание ряда ингредиентов пищи и в итоге вызывать различные патологические состояния. Так, гормональные оральные контрацептивы нарушают всасывание фолиевой и аскорбиновой кислот, рибофлавина, антикоагулянты непрямого действия подавляют

всасывание витамина К, слабительные средства - всасывание жирорастворимых витаминов и т.д.

Лекарственная форма. Скорость и полнота всасывания ЛС в ЖКТ зависят также от лекарственной формы. Лучше всего всасываются растворы, затем следуют суспензии, капсулы, простые таблетки, таблетки в оболочке и, наконец, лекарственные формы с замедленным высвобождением. ЛС любой формы лучше всасывается, если его принимают через 2-3 ч после еды и запивают 200-250 мл воды.

Иногда внутрь назначают ЛС, которые почти не всасываются в ЖКТ (аминогликозидные антибиотики, противогельминтные ЛС). Это позволяет лечить некоторые заболевания кишечника, избегая нежелательных системных эффектов препаратов.

Буккальное применение ЛС. Слизистая оболочка рта активно кровос-набжается, и при применении препаратов буккально (или сублинг-вально) действие ЛС начинается быстро. При таком пути введения препарат не вступает во взаимодействие с желудочным соком, скорость всасывания не зависит от приема пищи или одновременного назначения других ЛС, кроме того, препараты, всасывающиеся в полости рта, не подвержены пресистемному метаболизму 1 .

Спектр ЛС, применяемых буккально, невелик и включает в себя нитроглицерин и изосорбида динитрат (при стенокардии), нифеди-пин, каптоприл и клофелин (при гипертоническом кризе) и эрго-тамин (при мигрени). Действие препарата можно прервать в любой момент.

Ректальное назначение ЛС. Кровь от нижних отделов прямой кишки также поступает в системный кровоток, минуя печень. Этот путь введения используют для препаратов с высоким пресистемным метаболизмом. Кроме того, ректально назначают некоторые ЛС, раздражающие слизистую оболочку желудка (НПВС). К ректальному введению препаратов прибегают при рвоте, морской болезни, у детей грудного возраста. Дозы ЛС при ректальном применении, как правило, равны (или незначительно превосходят) дозы для приема внутрь. Ректально также назначают ЛС для местного лечения (при заболеваниях прямой кишки).

1 Кровь, оттекающая от желудка и кишечника (исключая прямую кишку), собирается в воротную вену, в результате чего весь объем ЛС, принятого внутрь, первоначально проходит через печень, где может подвергнуться пресистемному (до поступления в системный кровоток) метаболизму. Из-за этого ЛС с преимущественным метаболизмом в печени не следует назначать внутрь. От слизистой оболочки рта кровь, минуя печень, поступает сразу в системный кровоток (через верхнюю полую вену).

Недостатки этого пути введения заключаются в неприятных для пациента психологических моментах, кроме того, всасывание может замедляться, если прямая кишка содержит каловые массы.

Парентеральное введение ЛС. К парентеральному пути введения ЛС относят внутрисосудистое, внутримышечное, подкожное введение препаратов, кроме того, ингаляционное, эндотрахеальное введение, местное применение ЛС и трансдермальные системы.

Внутрисосудистое (обычно внутривенное) введение ЛС обеспечивает быстрое поступление ЛС в кровь, быстрое создание высокой системной концентрации и возможность управлять ей. Таким путем можно назначать ЛС, разрушающиеся в ЖКТ (пенициллины, инсулины), раздражающие ЖКТ или не всасывающиеся в нем (аминогликозид-ные антибиотики). Внутрисосудисто вводят большинство препаратов для лечения неотложных состояний. К недостаткам этого пути введения относят технические сложности сосудистого доступа, риск развития инфекции в месте инъекций, быстрое нарастание концентрации препарата, тромбозы вен в месте введения ЛС (эритромицин) и болевые ощущения (калия хлорид).

Препараты с длительным периодом элиминации вводят струй-но (болюсно), с коротким периодом полуэлиминации (лидокаин, окситоцин) - в виде длительных инфузий. Некоторые ЛС способны адсорбироваться на стенках систем для переливания (инсулин).

Внутримышечное введение. При внутримышечном введении всасывание препарата в кровь занимает около 10-30 мин. Принципиальных преимуществ этот путь введения ЛС не имеет. Следует помнить о риске развития местных осложнений (абсцессы), особенно при использовании концентрированных растворов препаратов.

Подкожно вводят препараты инсулина и гепарин натрия. После соответствующего обучения больной может делать инъекции самостоятельно. Повторные инъекции инсулинов вызывают атрофию жировой ткани в месте введения, что сказывается на скорости всасывания ЛС.

Ингаляционно назначают препараты для лечения заболеваний легких и бронхов. Ингаляционный путь обеспечивает быстрое начало действия этих ЛС и их высокую концентрацию в области рецепторов. Биодоступность большинства ЛС при этом способе введения не превышает 15-40% (из-за всасывания ЛС в полости рта и со слизистой оболочки крупных бронхов). Это обстоятельство позволяет ослабить нежелательные системные эффекты бронхолитиков и глюкокорти-коидов.

Эндотрахеально ЛС назначают в реанимационной практике. Ряд ЛС (эпинефрин, атропин, налоксон) можно вводить больному в критическом состоянии через интубационную трубку, не дожидаясь создания внутрисосудистого доступа. Эти ЛС хорошо и очень быстро всасываются в трахее, а эндотрахеальное введение не уступает по скорости развития эффекта внутривенному.

Кроме вышеперечисленных способов введения, иногда ЛС назначают местно (при лечении кожных, глазных, гинекологических заболеваний). Некоторые ЛС (нитраты, препараты для лечения морской болезни, половые гормоны) выпускают в виде пластырей с медленным трансдермальным высвобождением действующего вещества.

4.5. РАСПРЕДЕЛЕНИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ

В ОРГАНИЗМЕ

ЛС циркулируют в плазме крови частично в свободном виде, а частично в связанном с транспортными белками 1 . При этом фармакологически активна только фракция, не связанная с белками. Свободная и связанная фракции находятся в состоянии равновесия: молекулы ЛС быстро (Т 1 / 2 связи ЛС с молекулой альбумина составляет около 20 мс) переходят из одной фракции в другую.

Основной белок плазмы крови, связывающий ЛС (главным образом со свойствами кислот), - альбумин. Он обладает отрицательным зарядом. Альбумина в плазме настолько много, что полное насыщение каким-либо ЛС всех молекул альбумина происходит очень редко. Например, для насыщения всех белковых связей феноксиметилпе-нициллином этот препарат нужно вводить в чрезвычайно высоких дозах - 50-100 млн ЕД/сут 2 . Насыщение связи с альбумином может быть актуальным при применении клофибрата® и дизопирамида®.

Помимо альбумина, за связь с ЛС отвечают липопротеины и а 1 -кис-лый гликопротеин (с этими переносчиками связываются ЛС, имеющие свойства оснований). Концентрация гликопротеина увеличивается при стрессе, ИМ и некоторых других заболеваниях. Некоторые ЛС связываются с поверхностью эритроцитов и других форменных элементов крови (хинидин, аминазин).

1 Транспортные белки плазмы переносят кортизон, дигоксин, железо, медь и многие другие вещества.

2 Стандартная доза феноксиметилпенициллина при лечении тяжелых инфекций не превышает 12 млн ЕД.

Функцию связывающих веществ могут выполнять практически все белки, а также форменные элементы крови. Набор связывающих компонентов в тканях еще больше. ЛС могут связываться с одним или несколькими белками. Например, тетрациклин на 14% связывается с альбуминами, на 38% - с различными липопротеинами и на 8% - с другими белками сыворотки крови. Обычно, когда идет речь о связывании ЛС с белками плазмы, имеется в виду суммарная связь данного вещества с белками и другими фракциями сыворотки.

Ряд тканевых структур также активно связывает определенные химические вещества. Например, ткань щитовидной железы накапливает соединения йода и меди, костная ткань - тетрациклины и т.д.

Чаще всего белок выполняет функцию депо и участвует в регуляции баланса между связанным препаратом и его активной формой. Каждая удаленная из циркуляции (связь с рецептором, выведение из организма) молекула активного препарата возмещается путем диссоциации очередного белкового комплекса. Однако если сродство препарата к белкам и жирам тканей выше, чем к белкам плазмы, то его концентрация в плазме низкая, а в тканях высокая. В частности, некоторые антибактериальные препараты накапливаются в тканях в большей (5-10 раз и более) концентрации, чем в плазме (макролиды, фторхи-нолоны). Многие НПВС (диклофенак, фенилбутазон) имеют высокое сродство к белкам синовиальной жидкости, и уже через 12 ч после введения они практически отсутствуют в плазме крови, а их концентрация в ткани сустава остается на высоком уровне.

Связывание ЛС с белками крови может изменяться при нарушении функций почек, печеночной недостаточности, некоторых формах анемии и при снижении концентрации альбумина в плазме.

4.6. МЕТАБОЛИЗМ ЛЕКАРСТВЕННЫХ СРЕДСТВ

ЛС, как и другие чужеродные вещества, независимо от своей структуры могут подвергаться биотрансформации. Биологическая цель этого процесса заключается в создании субстрата, удобного для последующей утилизации (в качестве энергетического или пластического материала), или в ускорении выведения этих веществ из организма.

Биотрансформация происходит под воздействием нескольких ферментных систем, локализованных как в межклеточном пространстве, так и внутри клеток. Наиболее активно эти процессы проходят

в печени, стенке кишечника, плазме крови и в области рецепторов (например, удаление избытка медиатора из синаптической щели).

Все процессы метаболизма в организме человека подразделяются на две фазы. Реакции I фазы биотрансформации ЛС обычно несинтетические, II фазы - синтетические.

Метаболизм I фазы включает в себя изменение структуры ЛС путем его окисления, восстановления или гидролиза. Метаболизму I фазы подвергается этанол (окисляется до ацетальдегида), лидокаин (гидролизируется до моноэтилглицилксилидида и глицилксилиди-да) и большинство других ЛС. Реакции окисления при метаболизме I фазы подразделяют на реакции, катализируемые ферментами эндо-плазматической сети (микросомальные ферменты), и реакции, катализируемые ферментами, локализованными в других местах (немикро-сомальные).

Метаболизм II фазы включает в себя связывание молекул ЛС - сульфатирование, глюкуронидацию, метилирование или ацетили-рование. Часть ЛС подвергается метаболизму II фазы сразу, другие препараты предварительно проходят через реакции I фазы. Конечные продукты реакций II фазы лучше растворимы в воде и благодаря этому легче выводятся из организма.

Продукты реакций I фазы имеют различную активность: чаще всего метаболиты ЛС не обладают фармакологической активностью или их активность снижена по сравнению с исходным веществом. Однако в некоторых случаях метаболиты могут сохранять активность или даже превосходить по активности исходное ЛС: так, кодеин в организме человека трансформируется до морфина. Процессы биотрансформации могут приводить к образованию токсичных веществ (метаболиты изониазида, лидокаина, метронидазола и нитрофуранов) или метаболитов с противоположными фармакологическими эффектами, например метаболиты неселективных Р 2 -адреномиметиков обладают свойствами блокаторов этих же рецепторов. В противоположность этому метаболит фенацетина® парацетамол не оказывает присущего фенацетину® токсического действия на почки и постепенно заменил его в клинической практике.

Если ЛС имеет более активные метаболиты, они постепенно вытесняют предыдущие препараты из употребления. Примеры ЛС, первоначально известных в качестве метаболитов других препаратов, - оксазепам, парацетамол, амброксол. Существуют и про-лекарства, которые исходно не дают полезных фармакологических эффектов, но в процессе биотрансформации превращаются в актив-

ные метаболиты. Например, леводопа, проникая через гематоэн-цефалический барьер, превращается в мозгу человека в активный метаболит допамин. Благодаря этому удается избежать нежелательных эффектов допамина, которые наблюдаются при его системном применении. Некоторые пролекарства лучше всасываются в ЖКТ (талампициллин* 3).

На биотрансформацию ЛС в организме влияют возраст, пол, характер питания, сопутствующие заболевания, факторы внешней среды. Поскольку метаболизм ЛС происходит преимущественно в печени, любое нарушение ее функционального состояния отражается на фармакокинетике препаратов. При заболеваниях печени клиренс ЛС обычно уменьшается, а период полувыведения возрастает.

Пресистемный метаболизм (или метаболизм первого прохождения). Под этим термином понимают процессы биотрансформации до поступления ЛС в системный кровоток. Реакции пресистемного метаболизма проходят в просвете кишечника. Некоторые ЛС подвергаются действию неспецифических ферментов кишечного сока (феноксиметилпенициллин, аминазин). Биотрансформация мето-трексата, леводопы, допамина в кишечнике обусловлена ферментами, выделяемыми кишечной флорой. В стенке кишечника моноамины (тирамин ®) частично метаболизируются моноаминоксидазой, а хлор-промазин сульфатируется в кишечной стенке. Эти реакции проходят также и в легких (при ингаляционном введении), и в печени (при приеме внутрь).

Печень имеет низкую способность к экстракции (метаболизм + выведение с желчью) диазепама, дигитоксина, изониазида, парацетамола, фенобарбитала, фенитоина, прокаинамида, теофиллина, толбу-тамида, варфарина, промежуточную - ацетилсалициловой кислоты, кодеина, хинидина, высокую - пропранолола, морфина, лидокаина, лабеталола ® , нитроглицерина, эрготамина. Если в результате активного пресистемного метаболизма образуются вещества с меньшей фармакологической активностью, чем исходное ЛС, предпочтительнее парентеральное введение такого препарата. Пример ЛС с высоким пресистемным метаболизмом - нитроглицерин, который высокоактивен при сублингвальном приеме или внутривенном введении, однако при приеме внутрь полностью утрачивает свое действие. Пропранолол оказывает одинаковое фармакологическое действие при внутривенном введении в дозе 5 мг или при приеме внутрь в дозе около 100 мг. Высокий пресистемный метаболизм полностью исключает прием внутрь гепарина натрия или препаратов инсулина.

Микросомальное окисление. Большое значение в реакциях биотрансформации I фазы имеют два микросомальных фермента: НАДФ-Н-цитохром С-редуктаза и цитохром Р-450. Существует более 50 изоферментов цитохрома Р-450, сходных по физико-химическим и каталитическим свойствам. Большая часть цитохрома Р-450 в организме человека содержится в клетках печени. Различные ЛС подвергаются биотрансформации с участием различных изоферментов цитохрома Р-450 (подробнее см. на компакт-диске в табл. 4-1).

Активность ферментов микросомального окисления может изменяться под воздействием некоторых ЛС - индукторов и ингибиторов микросомального окисления (подробнее см. на компакт-диске). Это обстоятельство следует учитывать при одновременном назначении нескольких ЛС. Иногда происходит полное насыщение определенного изофермента цитохрома Р-450, что влияет на фармакокинетику препарата.

Цитохром Р-450 способен биотрансформировать практически все известные человеку химические соединения и связывать молекулярный кислород. В результате реакций биотрансформации, как правило, образуются неактивные или малоактивные метаболиты, быстро выводящиеся из организма.

Курение способствует индукции ферментов системы цитохро-ма Р-450, в результате чего ускоряется метаболизм ЛС, подвергающихся окислению с участием изофермента CYP1A2 (подробнее см. на компакт-диске). Влияние табачного дыма на активность гепато-цитов сохраняется до 12 мес после прекращения курения. У вегетарианцев биотрансформация ЛС замедлена. У лиц пожилого возраста и детей до 6 мес активность микросомальных ферментов также может быть снижена.

При высоком содержании в пище белков и интенсивной физической нагрузке метаболизм ускоряется.

4.7. ВЫВЕДЕНИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ

ИЗ ОРГАНИЗМА

ЛС выводятся из организма как в неизмененном виде, так и в виде метаболитов. Большинство ЛС выводятся из организма почками, в меньшей степени - легкими, а также с грудным молоком, через потовые железы, печень (с желчью выводятся хлорамфеникол, морфин, рифампицин, тетрациклин) и слюнные железы.

Выведение ЛС почками происходит посредством следующих механизмов.

Клубочковая фильтрация (в клубочках нефронов 1 каждую минуту фильтруется из крови около 120 мл жидкости, содержащей ионы, продукты метаболизма и ЛС). Преимущественно путем клубочко-вой фильтрации из организма удаляются дигоксин, гентамицин, прокаинамид, метотрексат. Скорость клубочковой фильтрации (СКФ) определяют по величине клиренса креатинина. Клиренс препаратов, выводящихся из организма только путем клубочко-вой фильтрации, равен произведению СКФ на долю препарата, которая находится в плазме в несвязанном виде (f): С 1 = f-СКФ.

Пассивная реабсорбция в канальцах. Из клубочков первичная моча попадает в канальцы нефрона, где часть жидкости и растворенных в ней веществ может всасываться обратно в кровь. При этом клиренс ЛС меньше СКФ: С 1 < f-СКФ. Процесс реабсорбции зависит от рН первичной мочи и ионизации ЛС. Например, при рН первичной мочи более 7 слабые кислоты (ацетилсалициловая кислота) будут реабсорбироваться хуже, так как в этом случае увеличивается их ионизация. При этих же условиях увеличится реабсорбция слабых оснований (амфетамин).

Активная секреция в почечных канальцах (например, фенокси-метилпенициллин). При этом клиренс ЛС всегда больше СКФ: С 1 >f ? СКФ.

Нефрон - структурная единица почек, в которой происходит образование мочи.

Клиническая фармакология и фармакотерапия: учебник. - 3-е изд., перераб. и доп. / под ред. В. Г. Кукеса, А. К. Стародубцева. - 2012. - 840 с.: ил.

  • 1) Введение лекарственного средства в организм;
  • 2) Высвобождение лекарственного вещества из лекарственной формы;
  • 3) Действие и проникновение лекарственного вещества через биологические мембраны в сосудистое русло и ткани;
  • 4) Распределение лекарственного вещества в биологических жидкостях органов и тканей;
  • 5) Биодоступность;
  • 6) Биотрансформация;
  • 7) Выведение лекарственного вещества и метаболитов.

Всасывание - процесс поступления лекарства из места введения в кровеносное русло. Независимо от пути введения скорость всасывания препарата определяется тремя факторами:

  • а) лекарственной формой (таблетки, свечи, аэрозоли);
  • б) растворимостью в тканях;
  • в) кровотоком в месте введения.

Существует ряд последовательных этапов всасывания лекарственных средств через биологические барьеры:

  • 1) Пассивная диффузия. Таким путем проникают хорошо растворимые в липоидах лекарственные вещества. Скорость всасывания определяется разностью его концентрации с внешней и внутренней стороны мембраны;
  • 2) Активный транспорт. В этом случае перемещение веществ через мембраны происходит с помощью транспортных систем, содержащихся в самих мембранах;
  • 3) Фильтрация. Вследствие фильтрации лекарства проникают через поры, имеющиеся в мембранах (вода, некоторые ионы и мелкие гидрофильные молекулы лекарственных веществ). Интенсивность фильтрации зависит от гидростатического и осмотического давления;
  • 4) Пиноцитоз. Процесс транспорта осуществляется посредством образования из структур клеточных мембран специальных пузырьков, в которых заключены частицы лекарственного вещества. Пузырьки перемещаются к противоположной стороне мембраны и высвобождают своё содержимое.

Распределение. После введения в кровеносное русло лекарственное вещество распределяется по всем тканям организма. Распределение лекарственного вещества определяется его растворимостью в липидах, качеством связи с белками плазмы крови, интенсивностью регионарного кровотока и другими факторами.

Значительная часть лекарства в первое время после всасывания попадает в те органы и ткани, которые наиболее активно кровоснабжаются (сердце, печень, лёгкие, почки).

Многие естественные вещества циркулируют в плазме частично в свободном виде, а частично в связанном состоянии с белками плазмы. Лекарственные средства также циркулируют как в связанном, так и в свободном состоянии. Важно, что фармакологически активна только свободная, несвязанная фракция препарата, а связанная с протеином представляет собой биологически неактивное соединение. Соединение и распад комплекса препарата с белком плазмы происходят как правило быстро.

Метаболизм (биотрансформация) - это комплекс физико-химических и биохимических превращений, которым подвергаются лекарственные вещества в организме. В результате образуются метаболиты (водорастворимые вещества), которые легко выводятся из организма.

В результате биотрансформации вещества приобретают большой заряд (становятся более полярными) и как следствие большую гидрофильность, т. е. растворимость в воде. Подобное изменение химической структуры влечёт за собой изменение фармакологических свойств (как правило, уменьшение активности), скорости выделения из организма.

Это происходит по двум основным направлениям:

  • а) снижение растворимости препаратов в жирах и
  • б) снижение их биологической активности.

Этапы метаболизма:

  • 1. Гидроксилирование.
  • 2. Диметилирование.
  • 3. Окисление.
  • 4. Образование сульфоксидов.

Выделяют два типа метаболизма лекарственных препаратов в организме:

Несинтетические реакции метаболизма лекарств, осуществляемые ферментами. К несинтетическим реакциям относится окисление, восстановление и гидролиз. Они разделяют на катализируемые ферментами лизосом клеток (микросомальные) и катализируемые ферментами другой локализации (немикросомальные).

Синтетические реакции, которые реализуются с помощью эндогенных субстратов. В основе этих реакций лежит конъюгация лекарственных препаратов с эндогенными субстратами (глюкуроновая кислота, глицин, сульфаты, вода и др.).

Биотрансформация препаратов происходит главным образом в печени, однако она осуществляется также в плазме крови и в других тканях. Интенсивные и многочис­ленные реакции метаболизма протекают уже в стенке кишечника.

На биотрансформацию влияют заболевания печени, характер питания, половые особенности, возраст и ряд других факторов. При поражении печени усиливается токсическое действие многих лекарственных веществ на центральную нервную систему и резко возрастает частота развития энцефалопатии. В зависимости от тяжести заболевания печени, некоторые лекарственные препараты применяются с осторожностью или они вовсе противопоказаны (барбитураты, наркотические анальгетики, фенотиазины, андрогенные стероиды и др.).

Клинические наблюдения показали, что эффективность и переносимость одних и тех же лекарственных веществ у различных животных неодинакова. Эти отличия определяются генетическими факторами, детерминирующими процессы метаболизма, рецепции, иммунного ответа и др. Изучение генетических основ чувствительности организма к лекарственным веществам составляет предмет фармакогенетики. Проявляется это чаще всего недостаточностью ферментов, катализирующих биотрансформацию препаратов. Атипичные реакции могут проявляться и при наследственных нарушениях обмена веществ.

Синтез ферментов находится под строгим генетическим контролем. При мутации соответствующих генов возникают наследственные нарушения структуры и свойств ферментов - ферментопатии. В зависимости от характера мутации гена изменяется скорость синтеза фермента или синтезируется атипичный фермент.

Элиминация. Различают несколько путей выведения (экскреции) лекарственных веществ и их метаболитов из организма: с калом, мочой, выдыхаемым воздухом, слюнными, потовыми, слёзными и молочными железами.

Элиминация почками. Экскреция лекарственных веществ и их метаболитов почками происходит с участием нескольких фи­зиологических процессов:

Клубочковая фильтрация. Скорость, с которой вещество переходит в клубочковый фильтрат, зависит от его концентрации в плазме, ОММ и заряда. Вещества с ОММ более 50 000 не попадают в клубочковый фильтрат, а с ОММ менее 10 000 (т. е. практически большинство лекарственных веществ) фильтруются в почечных клубочках.

Экскреция в почечных канальцах. К важным механизмам экскреторной функции почек относится способность клеток проксимальных почечных канальцев активно переносить заряженные (катионы и анионы) молекулы из плазмы в канальцевую жидкость.

Почечная канальцевая реабсорбция. В клубочковом фильтрате концентрация лекарственных веществ та же, что и в плазме, но по мере продвижения по нефрону он концентрируется с увеличением концентрационного градиента, поэто­му концентрация препарата в фильтрате превышает его кон­центрацию в крови, проходящей через нефрон.

Элиминация через кишечник.

После приёма препарата внутрь для системного действия часть его, не абсорбируясь, может экскретироваться с каловыми массами. Иногда внутрь принимают лекарственные средства, специально не предназначенные для абсорбции в кишечнике (например, неомицин). Под влиянием ферментов и бактериальной микрофлоры желудочно-кишечного тракта лекарственные препараты могут превращаться в другие соединения, которые вновь могут доставляться в печень, где и проходит новый цикл.

К важнейшим механизмам, способствующим активному транспорту препарата в кишечник, относится билиарная экскреция (печенью). Из печени с помощью активных транспортных систем лекарственные вещества в виде метаболитов или, не изменяясь, поступают в желчь, затем в кишечник, где и выводятся с калом.

Степень выведения лекарственных веществ печенью следует учитывать при лечении больных, страдающих болезнями печени и воспалительными заболеваниями желчных путей.

Элиминация через лёгкие. Легкие служат основным путем введения и элиминации летучих анестезирующих средств. В дру­гих случаях медикаментозной терапии их роль в элиминации невелика.

Элиминация лекарственных веществ молоком. Лекарственные вещества, содержащиеся в плазме лактирующих животных, экскретируются с молоком; их количества в нем слишком малы для того, чтобы существенным образом влиять на их элиминацию. Однако иногда лекарственные средства, попадающие в организм детеныша, могут оказывать на него существенное воздействие (снотворные, анальгетики и др.).

Клиренс позволяет определить выведение лекарственного вещества из организма. Термином «почечный клиренс креатинина» определяют выведение эндогенного креатинина из плазмы. Большинство лекарственных веществ элиминируется либо через почки, либо через печень. В связи с этим общий клиренс в организме представляет собой сумму печеночного и почечного клиренса, причём печёночный клиренс рассчитывают путем вычитания значения почечного клиренса из общего клиренса организма (снотворные, анальгетики и др.).

Фармакокинетика лекарственных средств.

Фармакокинетика – это раздел фармакологии, изучающий судьбу лекарственных средств в организме, то есть всасывание, распределение по органам и тканям, метаболизм и выведение. То есть, путь лекарственного вещества в организме от момента введения до выведения из организма.

Существуют разные пути введения лекарственного средства в организм. Их можно разделить на 2 большие группы: энтеральный (через желудочно-кишечный тракт), парентеральный (минуя желудочно-кишечный тракт). К энтеральным путям введения относят: пероральный (per os – через рот), сублингвальный (под язык), через зонд в желудок и двенадцатиперстную кишку, ректальный (через прямую кишку). К парентеральным путям введения относятся: накожный, внутрикожный, подкожный, внутримышечный, внутривенный, внутриартериальный, внутрисердечный, под оболочки мозга, ингаляционный, интрастернальный (в грудину). Каждый из путей введения имеет свои преимущества и недостатки.

Самый распространенный путь введения – это через рот (пероральный). Этот путь удобный, простой, не требуется стерильность препаратов. Всасывание лекарственного вещества идет частично в желудке, частично в кишечнике. Однако некоторые лекарственные вещества могут разрушаться под действием желудочного сока. В этом случае лекарственное вещество помещают в капсулы, которые не разрушаются желудочным соком. Под языком лекарственное средство всасывается быстро, минует печень и не вступает в контакт с содержимым желудка и кишечника (Нитроглицерин). При ректальном способе введения (суппозитории, клизмы) лекарственное вещество быстро всасывается, частично минуя печень. Однако, далеко не все препараты хорошо всасываются из слизистой прямой кишки, а некоторые препараты могут раздражать слизистые оболочки.

Из парентеральных путей введения чаще используют: под кожу, внутримышечный, внутривенный. Быстрый эффект наступает при внутривенном пути введения. Однако к трудностям парентеральных способов введения относят: болезненность укола, стерильность препаратов и шприцов, необходимость медицинского персонала для проведения инъекций.

Поступив в организм, лекарственное вещество должно всосаться. Всасывание (абсорбция) – это процесс поступления лекарственного вещества в кровеносную или лимфатическую систему из места введения. Основные механизмы всасывания: пассивная диффузия, облегченная диффузия, активный транспорт, пиноцитоз. Факторы, влияющие на всасывание лекарственного вещества при приеме внутрь: растворимость, лекарственная форма, pH желудка и кишечника, активность ферментов желудочно-кишечного тракта, перистальтика желудочно-кишечного тракта, прием пищи, мальабсорбция, дисбактериоз.

После всасывания лекарственного вещества в кровь оно будет циркулировать там, в «свободной» или «связанной» форме. «Свободная» форма (не связана с белками крови) растворима в водной фазе плазмы крови. Эта форма легко проникает через стенку капилляров в ткани и оказывает фармакологический эффект. «Связанная» форма – это часть лекарственного вещества, которая связана с белками крови (чаще с альбуминами) и неспособна, проникать в ткани. Эта форма представляет собой как бы депо препарата и по мере выведения лекарственного вещества из организма отщепляется от белка и переходит в «свободную» форму. Следовательно: только «свободная» форма лекарственного вещества оказывает фармакологический эффект.

После всасывания в кровь лекарственное вещество подвергается распределению по органам и тканям. Распределение по органам и тканям чаще всего бывает неравномерным. Степень поступления в ту или иную ткань зависит от разных факторов: от молекулярной массы, от растворимости в воде и липидах, от степени диссоциации; от возраста, пола; от массы жировых депо; от функционального состояния печени, почек, сердца; от способности преодолевать гистогематические барьеры.

К гистогематическим барьерам относят: капиллярную стенку, гематоэнцефалический барьер, гематоофтальмический барьер, плацентарный барьер. Капилляры легко проницаемы для лекарственных веществ, так как стенка капилляров имеет широкие поры, через которые легко проходят водорастворимые вещества с молекулярной массой не больше инсулина (5 – 6 кДа). А жирорастворимые вещества диффундируют через мембрану клеток.

Гематоэнцефалический барьер – представляет собой капиллярную стенку, которая является многослойной мембраной (эндотелий, межуточное вещество и глиальные клетки головного и спинного мозга). Такая мембрана лишена пор. Через гематоэнцефалический барьер легко проникают липофильные вещества путем простой диффузии (например, тиопентал натрия – наркозное средство). Для полярных соединений (пенициллины, миорелаксанты) гематоэнцефалический барьер не проницаем. Гематоэнцефалический барьер гипоталамуса, гипофиза отличается повышенной проницаемостью для лекарственных веществ. Проницаемость гематоэнцефалического барьера повышается при менингите, арахноидите, гипоксии, черепно-мозговых травмах. Некоторые лекарственные препараты (кофеин, эуфиллин, лидаза) повышают проницаемость гематоэнцефалического барьера.

Гематоофтальмический барьер отделяет кровь капилляров от внутриглазной жидкости в камерах глаза. В камеры глаза хорошо проходят липофильные препараты.

Плацентарный барьер разделяет кровообращение матери и плода. На ранних стадиях беременности наблюдается большая порозность этого барьера и многие лекарства легко проникают в плод. Затем этот барьер «укрепляется» и приобретает свойства липидной мембраны. Но с 33 – 35-й недели беременности истончается плацента и значительно повышается проницаемость плацентарного барьера. Это создает опасную ситуацию для плода. Не проникают через плацентарный барьер крупномолекулярные вещества (инсулин, полиглюкин), а также гидрофильные ионизированные молекулы: миорелаксанты, ганглиблокаторы.

Следующий этап фармакокинетики – это элиминация лекарственного вещества. Элиминация (от латинского eliminatum – удалять) – удаление лекарств из организма путем биотрансформации и экскреции.

Биотрансформация – это метаболическое превращение лекарств, в результате которых они приобретают полярные группы, то есть уменьшается растворимость в липидах и возрастает растворимость в воде. Полярные метаболиты пригодны к удалению из организма. Для примера хочу сказать, что если бы не было метаболизма, то одна терапевтическая доза снотворного средства этаминала могла бы находиться в организме 100 лет. Биотрансформация лекарств чаще всего (90 – 95%) происходит в печени, реже в слизистой оболочке кишечника, почках, легких, коже, в крови. Наиболее изучен метаболизм лекарств в печени. Метаболизм в печени происходит: либо в эндоплазматическом ретикулуме гепатоцитов с помощью микросомальных оксидаз смешанной функции либо вне эндоплазматического ретикулума (в митохондриях) с помощью немикросомальных ферментов.

Можно выделить 2 фазы биотрансформации. Первая фаза включает 3 реакции:

    окисление

    восстановление

    гидролиз

В процессе этих реакций молекулы субстрата приобретают полярные группы (гидроксильные, аминные и другие), в результате чего метаболиты лекарственных веществ становятся водорастворимыми и пригодными для выведения. Приведу несколько примеров биотрансформации лекарств. Окислению подвергаются: алкоголь, фенобарбитал, морфин, эфедрин, хлорпромазин. Восстановлению подвергаются: пропранолол, хлорамфеникол, нитрофураны. Гидролизируют следующие лекарства: прокаин, новокаинамид, сердечные гликозиды.

Вторая фаза биотрансформации включает реакции конъюгации, (то есть соединения, синтеза). Лекарственное вещество или метаболиты первой фазы связываются с некоторыми эндогенными веществами и образуют различные конъюгаты (соединения) с глюкуроновой кислотой (глюкоронизирование), уксусной кислотой (реакция ацетилирование), сульфатом, глицином, глутатионом, реакция метилирования по кислороду, азоту, сере. Иногда бывает так, то у одного и того же вещества наблюдается несколько этапов конъюгации: вначале (например) с глицином, потом – с глюкуроновой кислотой и так далее. В результате реакций конъюгации образуются водорастворимые вещества, которые быстро выводятся из организма. Примеры типовых реакций конъюгации: ацетилирование (сульфаниламиды, фтивазид, анестезин, прокаин), глюкуронизация (пропранолол, морфин, левомицетин), связывание с сульфатом (метилдофа, фенол), связывание с аминокислотами, с глицином (салициловая кислота, никотиновая кислота), метилирование: по кислороду (дофамин), по азоту (никотинамид), по сере (унитиол).

В результате биотрансформации лекарственные вещества меняют свою биологическую активность. Могут быть следующие варианты изменения их активности: потеря активности (инактивация) – наиболее частый вид, активация – это повышение активности. Например: фталазол после гидролиза превращается в активное вещество – норсульфазол; уротропин превращается в организме в активный формальдегид, витамин Д гидроксилируется в активный диоксивитамин «Д». Модификация основного эффекта, когда в процессе биотрансформации появляются другие свойства. Например, кодеин в организме частично деметилируется и превращается в морфин.

В процессе метаболизма под влиянием лекарственных средств может происходить индукция (усиление) или ингибирование (торможение) активности микросомальных ферментов печени. К препаратам-индукторам относят: фенобарбитал и другие барбитураты, зиксорин, рифампицин, димедрол, бутадион, стероидные гормоны, верошпирон и другие. При курсовом назначении этих препаратов-индукторов их метаболизм ускоряется в 3 – 4 раза К препаратам-ингибиторам метаболизма относят: эритромицин, левомицетин.

Следующий этап фармакокинетики – это выведение (экскреция) лекарственных веществ из организма. Это заключительный этап фармакокинетики. Лекарственные вещества и их метаболиты экскретируются разными путями: почками (чаще всего), через желудочно-кишечный тракт, легкими, кожей, железами (слюнными, потовыми, слезными, молочными).

Механизмы выведения почками: клубочковая фильтрация (пассивный процесс), канальцевая секреция (активный процесс), канальцевая реабсорбция (пассивный процесс). Клубочковой фильтрации подвергаются водорастворимые вещества с молекулярной массой до 5000 дальтон. Они не должны быть связаны с белками плазмы крови. Пример фильтрации – стрептомицин. Канальцевая секреция лекарственных веществ и метаболитов происходит против градиента концентрации с затратой энергии. Могут секретироваться вещества, связанные с белками. Пример секреции: бензилпенициллин (85%). Канальцевая реабсорбция происходит в дистальных отделах канальцев путем пассивной диффузии по градиенту концентрации. Благодаря реабсорбции пролонгируется (удлиняется) действие препарата (фенобарбитал, димедрол, диазепам).

Экскреция с желчью. Многие полярные лекарственные средства, имеющие молекулярную массу 300 и выше, могут выводиться с желчью через мембрану гепатоцитов, а также путем активного транспорта с помощью фермента глютатионтрансферазы. Степень связывания с белками плазмы крови значения не имеет. Неполярные лекарственные средства не экскретируются в желчь, но их полярные метаболиты довольно быстро попадают в желчь. Вместе с желчью лекарственные вещества попадают в кишечник и выделяются с калом. Некоторые препараты могут подвергаться в кишечнике деконъюгации с помощью кишечной микрофлоры. В этом случае эти препараты могут повторно всасываться (например, дигитоксин). Это явление называется энтерогепатическая (печеночно-кишечная) циркуляция.

Экскреция легкими. Некоторые лекарственные вещества могут выделяться частично или полностью через легкие. Это - летучие и газообразные вещества (например, средства для наркоза), этиловый спирт, камфора и другие.

Экскреция грудными железами. Некоторые препараты могут легко проникать в грудные железы и экскретироваться с молоком матери. В молоко легко проникают препараты, хорошо связывающиеся с жиром: теофиллин, левомицетин, сульфаниламиды, ацетилсалициловая кислота, препараты лития. Возможны токсические эффекты проникающих в грудное молоко лекарственных средств на грудного младенца. Особенно опасны: противоопухолевые препараты, препараты лития, изониазид, левомицетин; препараты, вызывающие аллергию (бензилпенициллин).

Экскреция со слюной. Некоторые препараты могут попасть в слюну путем пассивной диффузии. Чем более липофильный препарат, тем легче он проникает в слюну. Если концентрация препарата в слюне корригирует с концентрацией его в плазме крови, то в этих случаях легко определять концентрацию препарата в слюне. Например, антипирин, пармидин. Частично выделяются со слюной: парацетамол, лидокаин, литий, фенацетин, хинидин, теофиллин, пармидин, антипирин, клофелин.

Термины фармакокинетики.

Элиминация – суммарная величина биотрансформации + экскреции. В результате элиминации лекарственное вещество теряет активность (метаболизирует) и выводится из организма.

Квота-элиминация (или коэффициент элиминации) – это суточная потеря препарата, выраженная в процентах к препарату, содержащегося в организме. Квота-элиминация: строфантина 50%, дигитоксина 7%. Эта величина важна для режима дозирования.

Период полувыведения (полужизни, полуэлиминации) – это время, за которое концентрация препарата в плазме крови снижается наполовину (50%). Обозначается: Т½ в часах и минутах. Чем больше Т½, тем медленнее выводится препарат и его реже надо вводить в организм во избежаний побочных явлений. Эта величина зависит от: пути введения препарата, дозы, возраста; функции печени, почек.

Клиренс – это количественная оценка скорости экскреции лекарственных веществ. Почечный клиренс равен объему плазмы крови, который полностью очищается (освобождается) от лекарственного вещества за единицу времени (л/мин, мл/мин).

Общий клиренс – это объем плазмы крови, из которого за единицу времени выводится лекарственное вещество с мочой, желчью, легкими и другими путями. Это суммарная величина.

Важным параметром фармакокинетики является биодоступность лекарственного вещества – это доля введенной внутрь дозы вещества, которая поступает в общий кровоток в активной форме (в процентах). Биодоступность зависит от: полноты всасывания лекарственного вещества, степени инактивации в желудочно-кишечном тракте, интенсивности метаболизма при первичном прохождении через печень.

Вам надо знать 2 термина: первичное прохождение через печень лекарственного вещества, вторичное поступление в печень. «Первичное прохождение лекарственного вещества через печень» (или «метаболизм первого прохождения») применим для лекарственных препаратов, которые всасываются в желудке и тонком кишечнике, так как из этих органов лекарственное вещество попадает в воротную вену (venae portae), а далее – в печень и только потом поступает в общий кровоток и разносится по органам и тканям. А оттуда лекарственное вещество вновь поступает в печень, где происходит окончательный метаболизм лекарственного вещества, то есть вторичное поступление в печень.

Таким образом, только при приеме лекарственного средства per os, оно дважды поступает в печень. при первом прохождении через печень может начаться метаболизм лекарственного вещества. Кроме того, некоторые лекарственные вещества начинают метаболизировать уже в желудке и кишечнике. весь комплекс процессов, приводящих к инактивации лекарственного вещества до его попадания в общий кровоток называется «пресистемной элиминацией». Биодоступность выражается в процентах. Если лекарственное вещество вводить внутривенно, то биодоступность будет почти всегда 100%. «Объем распределения» (Vd) – это параметр фармакокинетики, который характеризует степень захвата вещества тканями из плазмы крови (л/кг). Эту величину можно использовать для оценки характера распределения препарата в организме, то есть где больше накапливается вещество: в клетке или в межклеточной жидкости. Если объем распределения низкий (менее 1 – 2 л/кг), то большая часть препарата находится в межклеточной жидкости и наоборот. Знание величины Vd пригодится для оказания помощи при передозировке препарата.

Публикации по теме