Построение уравнения регрессии в стандартизованном масштабе.

В долях среднего квадратического отклонения факторного и результативного признаков;

6. Если параметр а в уравнении регрессии больше нуля, то:

7. Зависимость предложения от цен характеризуется уравнением вида у = 136·х 1,4 . Что это означает?

С увеличением цен на 1 %, предложение увеличивается в среднем на 1,4%;

8. В степенной функции параметр b является:

Коэффициентом эластичности;

9. Остаточное среднее квадратическое отклонение определяется по формуле:

10. Уравнение регрессии, построенное по 15 наблюдениям, имеет вид: у = 4 + 3х +?6значение t - критерия равно 3,0 Коэффициент детерминации для этого уравнения равен:

На стадии формирования модели, в частности в процедуре отсева факторов, используют

Частные коэффициенты корреляции.

12. «Структурными переменными» называются :

Фиктивные переменные.

13. Дана матрица парных коэффициентов корреляции:

У xl х2 х3

У 1,0 - - -

Xl 0,7 1,0 - -

Х2 -0,5 0,4 1,0 -

Х3 0,4 0,8 -0,1 1,0

Какие факторы являются коллинеарными?

14. Автокорреляционная функция временного ряда - это:

последовательность коэффициентов автокорреляции уровней временного ряда;

15. Прогнозное значение уровня временного ряда в аддитивной модели - это:

Сумма трендовой и сезонной компонент.

16. Одним из методов тестирования гипотезы о коинтеграции временных рядов является:

Критерий Энгеля-Грангера;

17. Коинтеграция временных рядов - это:

Причинно - следственная зависимость в уровнях двух (или более) временных рядов;

18. Коэффициенты при экзогенных переменных в системе уравнений обозначаются:



19. Уравнение сверхидентифицируемо, если:

20.Модель считается неидентифицируемой, если:

Хотя бы одно уравнение модели неидентифицируемо;

ВАРИАНТ 13

1. Первым этапом эконометрического исследования является:

Постановка проблемы.

При какой зависимости разным значениям одной переменной соответствуют разные распределения значений другой переменной?

Статистической;

3. Если коэффициент регрессии больше нуля, то:

Коэффициент корреляции больше нуля.

4. Классический подход к оцениванию коэффициентов регрессии основан на:

Методе наименьших квадратов;

F-критерий Фишера характеризует

Соотношение факторной и остаточной дисперсий, рассчитанных на одну степень свободы.

6. Стандартизованным коэффициентом регрессии является:

Множественный коэффициент корреляции;

7. Для оценки значимости коэффициентов нелинейной регрессии рассчитывают:

F - критерий Фишера;

8. Методом наименьших квадратов определяются параметры:

Линейной регрессии;

9. Случайная ошибка коэффициента корреляции определяется по формуле:

M= √(1-r 2)/(n-2)

10. Дано: Dфакт = 120;Docт = 51. Чему будет равно фактическое значение F-критерия Фишера?

11.Частный F-критерий Фишера оценивает:

Статистическую значимость присутствия соответствующего фактора в уравнении множественной регрессии;

12. Несмещенность оценки означает, что :

Математическое ожидание остатков равно нулю.

13. При расчете модели множественной регрессии и корреляции в Ехсеl для вывода матрицы парных коэффициентов корреляции используется:

Инструмент анализа данных Корреляция;

14. Сумма значений сезонной компоненты по всем кварталам в аддитивной модели должна быть равна:

15. Прогнозное значение уровня временного ряда в мультипликативной модели - это:

Произведение трендовой и сезонной компонент;

16. Ложная корреляция вызвана наличием:

Тенденции.

17. Для определения авто корреляции остатков используют:

Критерий Дарбина- Уотсона;

18. Коэффициенты при эндогенных переменных в системе уравнений обозначаются :

19 . Условие, что ранг матрицы, составленной из коэффициентов при переменных. отсутствующих в исследуемом уравнении не меньше числа эндогенных переменных системы на единицу-это:

Дополнительное условие идентификации уравнения в системе уравнений

20. Косвенный метод наименьших квадратов применяется для решения:

Идентифицируемой системы уравнений.

ВАРИАНТ 14

1. Математико-статистическими выражениями, количественно характеризующими экономические явления и процессы и обладающими достаточно высокой степенью надежности, называются:

Эконометрические модели.

2. Задачей регрессионного анализа является:

Определение тесноты связи между признаками;

3. Коэффициент регрессии показывает:

Среднее изменение результата с изменением фактора на одну единицу его измерения.

4. Средняя ошибка аппроксимации - это:

Среднее отклонение расчетных значений результативного признака от фактических;

5. Неправильный выбор математической функции относится к ошибкам:

Спецификации модели;

6. Если параметр а в уравнении регрессии больше нуля, то :

Вариация результата меньше вариации фактора;

7. Линеаризация какой функции происходит путем замены переменных: x=x1, x2=x2

Полинома второй степени;

8. Зависимость спроса от цен характеризуется уравнением вида у = 98 х - 2,1. ЧТО это означает?

С увеличением цен на 1 %, спрос снижается в среднем на 2,1 %;

9. Средняя ошибка прогноза определяется по формуле:

- σост=√(∑(у-ỹ) 2 / (n-m-1))

10. Пусть имеется уравнение парной регрессии: у = 13+6*x, построенное по 20 наблюдениям, при этом r = 0,7. Определить стандартную ошибку для коэффициента корреляции:

11. Стандартизованные коэффициенты регрессии показывают:

На сколько сигм изменится в среднем результат, если соответствующий фактор изменится на одну сигму при неизменном среднем уровне других факторов;

12. Одной ИЗ пяти предпосылок метода наименьших квадратов является:

Гомоскедастичность;

13. Для расчета множественного коэффициента корреляции в Excel используется :

Инструмент анализа данных Регрессия.

14. Сумма значений сезонной компоненты по всем периодам в мультипликативной модели в цикле должна быть равна:

Четырем.

15. При аналитическом выравнивании временного ряда в качестве независимой переменной выступает:

16. Автокорреляция в остатках - это нарушение предпосылки МНК о:

Случайности остатков, полученных по уравнению регрессии;

В эконометрике часто используется иной подход к определению параметров множественной регрессии (2.13) с исключенным коэффициентом :

Разделим обе части уравнения на стандартное отклонение объясняемой переменной S Y и представим его в виде:

Разделим и умножим каждое слагаемое на стандартное отклонение соответствующей факторной переменной, чтобы перейти к стандартизованным (центрированным и нормированным) переменным:

где новые переменные обозначены как

.

Все стандартизованные переменные имеют нулевую среднюю величину и одинаковую дисперсию, равную единице.

Уравнение регрессии в стандартизованной форме имеет вид:

где
- стандартизованные коэффициенты регрессии.

Стандартизованные коэффициенты регрессии отличаются от коэффициентовобычной, естественной формы тем, что их величина не зависит масштаба измерения объясняемой и объясняющих переменных модели. Кроме того, между ними существует простая взаимосвязь:

, (3.2)

которая дает другой способ вычисления коэффициентов по известным значениям, более удобный в случае, например, двухфакторной регрессионной модели.

5.2. Нормальная система уравнений мнк в стандартизованных

переменных

Оказывается, что для вычисления коэффициентов стандартизованной регрессии нужно знать только парные коэффициенты линейной корреляции. Чтобы показать каким образом это делается, исключим из нормальной системы уравнений МНК неизвестную с помощью первого уравнения. Умножая первое уравнение на (
) и складывая его почленно со вторым уравнением, получим:

Заменяя обозначениями дисперсии и ковариаций выражения в скобках

перепишем второе уравнение в удобном для дальнейшего упрощения виде:

Разделим обе части этого уравнения на стандартное отклонение переменных S Y и ` S X 1 , а каждое слагаемое разделим и умножим на стандартное отклонение переменной, соответствующей номеру слагаемого:

Вводя характеристики линейной статистической связи:

и стандартизованные коэффициенты регрессии

,

получаем:

После аналогичных преобразований всех остальных уравнений,нормальная система линейных уравнений МНК (2.12) принимает следующий, более простой вид:

(3.3)

5.3. Параметры стандартизованной регрессии

Стандартизованные коэффициенты регрессии в частном случае модели с двумя факторами определяются из следующей системы уравнений:

(3.4)

Решая эту систему уравнений, находим:

, (3.5)

. (3.6)

Подставив найденные значения коэффициентов парной корреляции в уравнения (3.4) и (3.5), получими. Затем с помощью формул (3.2) нетрудно вычислить оценки коэффициентови, а затем, при необходимости, вычислить оценкупо формуле

6. Возможности экономического анализа на основе многофакторной модели

6.1. Коэффициенты стандартизованной регрессии

Стандартизованные коэффициенты регрессии показывают, на сколько стандартных отклонений изменится в среднем объясняемая переменнаяY , если соответствующая объясняющая переменная Х i изменится на величину
одного ее стандартного отклонения при сохранении неизменным значений среднего уровня всех остальных факторов.

В силу того, что в стандартизованной регрессии все переменные заданы как центрированные и нормированные случайные величины, коэффициенты сравнимы между собой. Сравнивая их друг с другом, можно ранжировать соответствующие им факторыХ i по силе воздействия на объясняемую переменную Y . В этом состоит основное преимущество стандартизованных коэффициентов регрессии от коэффициентов регрессии в естественной форме, которые несравнимы между собой.

Эта особенность стандартизованных коэффициентов регрессии позволяет использовать при отсеве наименее значимых факторов Х i с близкими к нулю значениями их выборочных оценок . Решение об исключении их из модельного уравнения линейной регрессии принимается после проверки статистических гипотез о равенстве нулю его средней величины.

4.2 Построение уравнения регрессии в стандартизованном масштабе

Параметры множественной регрессии можно определить другим способом, когда на основе матрицы парных коэффициентов корреляции строится уравнение регрессии в стандартизованном масштабе:

Применяя МНК к уравнению множественной регрессии в стандартизованном масштабе, после соответствующих преобразований получим систему нормальных уравнений вида:

где rух1, rух2 – парные коэффициенты корреляции.

Парные коэффициенты корреляции найдем по формулам:

Система уравнений имеет вид:

Решив систему методом определителей, получили формулы:

Уравнение в стандартизированном масштабе имеет вид:

Таким образом, с ростом уровня бедности на 1 сигму при неизменном среднедушевом доходе населения, общий коэффициент рождаемости уменьшится на 0,075 сигмы; а с увеличением среднедушевого дохода населения на 1 сигму при неизменном уровне бедности, общий коэффициент рождаемости возрастет на 0,465 сигмы.

Во множественной регрессии коэффициенты «чистой» регрессии bi связаны со стандартизованными коэффициентами регрессии βi следующим образом:


5. Частные уравнения регрессии

5.1 Построение частных уравнений регрессии

Частные уравнения регрессии связывают результативный признак с соответствующими факторами х при закреплении других учитываемых во множественной регрессии факторов на среднем уровне. Частные уравнения имеют вид:

В отличие от парной регрессии частные уравнения регрессии характеризуют изолированное влияние фактора на результат, т.к. другие факторы закреплены на неизменном уровне.

В данной задаче частные уравнения имеют вид:

5.2 Определение частных коэффициентов эластичности

На основе частных уравнений регрессии можно определить частные коэффициенты эластичности для каждого региона по формуле:


Рассчитаем частные коэффициенты эластичности для Калининградской и Ленинградской областей.

Для Калининградской области х1=11,4, х2=12,4, тогда:

Для Ленинградской области х1 =10,6, х2=12,6:

Таким образом, в Калининградской области при увеличении уровня бедности на 1%, общий коэффициент рождаемости сократится на 0,07%, а при увеличении среднедушевых доходов на 1%, общий коэффициент рождаемости возрастет на 0,148%. В Ленинградской области при увеличении уровня бедности на 1%, общий коэффициент рождаемости сократится на 0,065%, а при увеличении среднедушевых доходов на 1%, общий коэффициент рождаемости возрастет на 0,15%.

5.3 Определение средних коэффициентов эластичности

Средние по совокупности показатели эластичности находим по формуле:


Для данной задачи они окажутся равными:

Таким образом, с ростом уровня бедности на 1%, общий коэффициент рождаемости в среднем по совокупности сократится на 0,054% при неизменном среднедушевом доходе. При увеличении среднедушевого дохода на 1%, общий коэффициент рождаемости в среднем по изучаемой совокупности возрастет на 0,209% при неизменном уровне бедности.


6. Множественная корреляция

6.1 Коэффициент множественной корреляции

Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции и его квадрата – коэффициента детерминации. Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком, т.е. оценивает тесноту связи совместного влияния факторов на результат.

Величина индекса множественной корреляции должна быть больше или равна максимальному парному индексу корреляции. При линейной зависимости признаков формула индекса корреляции может быть представлена следующим выражением:

Таким образом, связь общего коэффициента рождаемости с уровнем бедности и среднедушевым доходом слабая.



И все коэффициенты корреляции равны 1, то определитель такой матрицы равен 0: . Чем ближе к 0 определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И наоборот, чем ближе к 1 определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов. Проверка мультиколлинеарности факторов может быть...

Коэффициенты уравнения регрессии, как и всякие абсолютные показатели, не могут быть использованы в сравнительном анализе, если единицы измерения соответствующих переменных различны. Например, если y – расходы семьи на питание, х 1 – размер семьи, а х 2 – общий доход семьи, и мы определяем зависимость типа = a + b 1 x 1 + b 2 x 2 и b 2 > b 1 , то это не значит, что x 2 сильнее влияет на y , чем х 1 , т. к. b 2 – это изменение расходов семьи при изменении доходов на 1 руб., а b 1 – изменение расходов при изменении размера семьи на 1 человека.

Сопоставимость коэффициентов уравнения регрессии достигается при рассмотрении стандартизованного уравнения регрессии:

y 0 =  1 x 1 0 +  2 x 2 0 + … +  m x m 0 + е,

где y 0 и x 0 k стандартизованные значения переменных y и x k :

S y и S– стандартные отклонения переменныхy и x k ,

 k (k=)-коэффициенты уравнения регрессии (но не параметры уравнения регрессии, в отличие от приведенных ранее обозначений). -коэффициенты показывают, на какую часть своего стандартного отклонения (S y) изменится зависимая переменная y , если независимая переменная x k изменится на величину своего стандартного отклонения (S). Оценки параметров уравнения регрессии в абсолютных показателях (b k) и β-коэффициенты связаны соотношением:

-коэффициенты уравнения регрессии в стандартизованном масштабе создают реальное представление о воздействии независимых переменных на моделируемый показатель. Если величина -коэффициента для какой-либо переменной превышает значение соответствующего -коэффициента для другой переменной, то влияние первой переменной на изменение результативного показателя следует признать более существенным. Следует иметь в виду, что стандартизированное уравнение регрессии в силу центрирования переменных не имеет свободного члена по построению.

Для простой регрессии -коэффициент совпадает с коэффициентом парной корреляции, что позволяет придать коэффициенту парной корреляции смысловое значение.

При анализе воздействия показателей, включённых в уравнение регрессии, на моделируемый признак, наравне с -коэффициентами используются также коэффициенты эластичности. Например, показатель средней эластичности рассчитывается по формуле

и показывает, на сколько процентов в среднем изменится зависимая переменная, если среднее значение соответствующей независимой переменной изменится на один процент (при прочих равных условиях).

2.2.9. Дискретные переменные в регрессионном анализе

Как правило, переменные в регрессионных моделях имеют непрерывные области изменения. Однако теория не накладывает никаких ограничений на характер таких переменных. Довольно часто возникает необходимость учитывать в регрессионном анализе влияние качественных признаков и зависимость таковых от разных факторов. В этом случае появляется необходимость вводить в регрессионную модель дискретные переменные. Дискретные переменные могут быть как независимыми, так и зависимыми. Рассмотрим эти случаи по-отдельности. Сначала рассмотрим случай дискретных независимых переменных.

Фиктивные переменные в регрессионном анализе

Чтобы включить в регрессию в качестве независимых переменных качественные признаки, их надо оцифровать. Одним из методов их оцифровки является использование фиктивных переменных. Название не совсем удачное – никакие они не фиктивные, просто для этих целей более удобно использовать переменные, принимающие всего два значения – ноль или единица. Вот их и назвали фиктивными. Обычно качественная переменная может принимать несколько значений-уровней. Например, пол – мужской, женский; квалификация – высокая, средняя, низкая; сезонность – I, II, III и IV кварталы и т. д. Существует правило, согласно которому для оцифровки таких переменных нужно вводить количество фиктивных переменных, числом меньше на единицу, чем число уровней моделируемого показателя. Это необходимо для того, чтобы такие переменные не оказались бы линейно зависимыми.

В наших примерах: пол – одна переменная, равная 1 для мужчин и 0 – для женщин. Квалификации имеет три уровня, значит, нужны две фиктивные переменные: например, z 1 = 1 для высокого уровня, 0 – для других; z 2 = 1 для среднего уровня, 0 – для других. Третью аналогичную переменную вводить нельзя, т. к. в этом случае они оказались бы линейно зависимыми (z 1 + z 2 + z 3 = 1), определитель матрицы (X T X) обратился бы в нуль и найти обратную матрицу (X T X) -1 не удалось бы. Как известно, оценки параметров уравнения регрессии определяются из соотношения: T X) -1 X T Y).

Коэффициенты при фиктивных переменных показывают, насколько значение зависимой переменной отличается при анализируемом уровне по сравнению с отсутствующим уровнем. Например, если бы моделировался уровень зарплаты в зависимости от нескольких признаков и уровня квалификации, то коэффициент при z 1 показал бы, насколько зарплата у специалистов с высоким уровнем квалификации отличается от зарплаты у специалиста с низким уровнем квалификации при прочих равных условиях, а коэффициент при z 2 – аналогичный смысл для специалистов со средним уровнем квалификации. В случае с сезонностью пришлось бы вводить три фиктивных переменных (если рассматриваются квартальные данные) и коэффициенты при них показали бы, насколько величина зависимой переменной отличается для соответствующего квартала от уровня зависимой переменной для квартала, который не был введён при их оцифровке.

Фиктивные переменные кроме того вводятся для моделирования структурных изменений в динамике изучаемых показателей при анализе временных рядов.

Пример 4. Стандартизированное уравнение регрессии и фиктивные переменные

Рассмотрим пример использования стандартизированных коэффициентов и фиктивных переменных на примере анализа рынка двухкомнатных квартир на основе уравнения множественной регрессии при следующем наборе переменных:

PRICE – цена;

TOTSP – общая площадь;

LIVSP – жилая площадь;

KITSP – площадь кухни;

DIST – расстояние до центра города;

WALK – равна 1, если до станции метро можно дойти пешком и равна 0, если надо воспользоваться общественным транспортом;

BRICK – равна 1, если дом кирпичный и равна 0, если панельный;

FLOOR – равна 1, если квартира не на первом и не на последнем этаже и равна 0 в противном случае;

TEL – равна 1, если в квартире есть телефон и равна 1, если нет;

BAL – равна 1, если есть балкон и равна 0, если балкона нет.

Расчёты проведены с помощью ППП STATISTICA (рисунок 2.23). Наличие -коэффициентов позволяет упорядочить переменные по степени их влияния на зависимую переменную. Проведем краткий анализ результатов расчётов.

На основе статистики Фишера делаем вывод о значимости уравнения регрессии (р-level < 0,05). Обработана информация о 6 286 квартирах (n–m–1 = 6 276, а m = 9). Все коэффициенты уравнения регрессии (кроме при переменной BAL) значимы (р-величины для них < 0,05), а наличие или отсутствие балкона в этом случае существенно не сказывается на цене квартиры.

Рисунок 2.24 – Отчёт о рынке квартир на основе ППП STATISTICA

Коэффициент множественной детерминации равен 52%, следовательно, включённые в регрессию переменные обусловливают изменение цены на 52 %, а остальные 48 % изменения цены квартиры зависят от неучтённых факторов. В том числе и от случайных колебаний цены.

Каждый из коэффициентов при переменной показывает, насколько изменится цена квартиры (при прочих равных условиях), если данная переменная изменится на единицу. Так, например, при изменении общей площади на 1 кв. м цена квартиры в среднем изменится на 0,791 у.е., а при удалении квартиры от центра города на 1 км цена квартиры в среднем уменьшится на 0,596 у.е. и т. д. Фиктивные переменные (последние 5) показывают, на сколько в среднем изменится цена квартиры, если перейти с одного уровня этой переменной на другой. Так, например, если дом кирпичный, то квартира в нем в среднем на 3,104 у. е. дороже, чем такая же в панельном доме, а наличие телефона в квартире поднимает ее цену в среднем на 1,493 у. е. и т. п.

На основе -коэффициентов можно сделать следующие выводы. Наибольшим -коэффициентом, равным 0,514 является коэффициент при переменной «общая площадь», следовательно в первую очередь цена квартиры формируется под влиянием её общей площади. Следующий фактор по степени влияния на изменение цены квартиры является расстояние до центра города, затем материал, из которого построен дом, затем площадь кухни и т. д.

Оценки неизвестных параметров уравнения регрессии определяются с помощью метода наименьших квадратов. Однако существует и другой способ оценивания этих коэффициентов в случае множественной линейной регрессии. Для этого строится уравнение множественной регрессии в стандартизированном (нормированном) масштабе. Это означает, что все переменные, участвующие в регрессионной модели, стандартизируются с помощью специальных формул. Процесс стандартизации позволяет установить точкой отсчета для каждой нормированной переменной ее среднее значение по выборке. При этом единицей измерения стандартизированной переменной становится ее среднеквадратическое отклонение. Уравнение регрессии в стандартизованном масштабе:

где , - стандартизованные переменные;

Стандартизованные коэффициенты регрессии. Т.е. посредством процесса стандартизации точкой отсчета для каждой нормированной переменной устанавливается ее среднее значение по выборочной совокупности. При этом в качестве единицы измерения стандартизированной переменной принимается ее среднеквадратическое отклонение σ . β-коэффициенты показывают , на сколько сигм (средних квадратических отклонений) изменится в среднем результат за счет изменения соответствующего фактораx I на одну сигму при неизменном среднем уровне других факторов. Применяя МНК к уравнению множественной регрессии в стандартизованном масштабе, после соответствующих преобразований получим систему нормальных уравнений вида для определения стандартизованных коэфф. регрессии Коэффициенты β определяются при помощи МНК из следующей системы уравнений методом определителей:

Следует отметить что величины r yx 1 и r xixj называются парными коэфф. корреляции и определяются по формулам: r yx 1 = yxi среднее – у ср*хiср/ ǪхǪу; r xixj = хixj средние – xi ср*xjср/ǪхiǪxj. Решая систему определяем стандартизованные коэфф. регрессии. Сравнивая их друг с другом можно ранжировать факторы по силе воздействия на разультат. В этом основное достоинство стандартизованных коэфф.регрессии в отличии от коэфф. чистой регрессии, которые несравнимы между собой. Для оценки параметров нелинейных уравнений множественной регрессии предварительно осуществляется преобразование последних в линейную форму (с помощью замены переменных) и МНК применяется для нахождения параметров линейного уравнения множественной регрессии в преобразованных переменных. В случаевнутренне нелинейныхзависимостей для оценки параметров приходится применять методы нелинейной оптимизации Стандартизованные коэффициенты регрессии βi сравнимы между собой, что позволяет ранжировать факторы по силе их воздействия на результат. Большее относительное влияние на изменение результативной переменнойy оказывает тот фактор, которому соответствует большее по модулю значение коэффициентаβi .В этом основное достоинство стандартизованных коэффициентов регрессии , в отличие от коэффициентов «чистой» регрессии, которые не сравнимы между собой. коэффициентов «чистой» регрессииbi с коэффициентамиβi описывается соотношением.

Публикации по теме