Решение дифференциальных уравнений 3 порядка. Виды дифференциальных уравнений, методы решения

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.

Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":


В некоторых задачах физики непосредственную связь между величинами, описывающими процесс, установить не удается. Но существует возможность получить равенство, содержащее производные исследуемых функций. Так возникают дифференциальные уравнения и потребность их решения для нахождения неизвестной функции.

Эта статья предназначена тем, кто столкнулся с задачей решения дифференциального уравнения, в котором неизвестная функция является функцией одной переменной. Теория построена так, что с нулевым представлением о дифференциальных уравнениях, вы сможете справиться со своей задачей.

Каждому виду дифференциальных уравнений поставлен в соответствие метод решения с подробными пояснениями и решениями характерных примеров и задач. Вам остается лишь определить вид дифференциального уравнения Вашей задачи, найти подобный разобранный пример и провести аналогичные действия.

Для успешного решения дифференциальных уравнений с Вашей стороны также потребуется умение находить множества первообразных (неопределенные интегралы) различных функций. При необходимости рекомендуем обращаться к разделу .

Сначала рассмотрим виды обыкновенных дифференциальных уравнений первого порядка, которые могут быть разрешены относительно производной, далее перейдем к ОДУ второго порядка, следом остановимся на уравнениях высших порядков и закончим системами дифференциальных уравнений.

Напомним, что , если y является функцией аргумента x .

Дифференциальные уравнения первого порядка.

    Простейшие дифференциальные уравнения первого порядка вида .

    Запишем несколько примеров таких ДУ .

    Дифференциальные уравнения можно разрешить относительно производной, произведя деление обеих частей равенства на f(x) . В этом случае приходим к уравнению , которое будет эквивалентно исходному при f(x) ≠ 0 . Примерами таких ОДУ являются .

    Если существуют значения аргумента x , при которых функции f(x) и g(x) одновременно обращаются в ноль, то появляются дополнительные решения. Дополнительными решениями уравнения при данных x являются любые функции, определенные для этих значений аргумента. В качестве примеров таких дифференциальных уравнений можно привести .

Дифференциальные уравнения второго порядка.

    Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    ЛОДУ с постоянными коэффициентами является очень распространенным видом дифференциальных уравнений. Их решение не представляет особой сложности. Сначала отыскиваются корни характеристического уравнения . При различных p и q возможны три случая: корни характеристического уравнения могут быть действительными и различающимися , действительными и совпадающими или комплексно сопряженными . В зависимости от значений корней характеристического уравнения, записывается общее решение дифференциального уравнения как , или , или соответственно.

    Для примера рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами . Корнями его характеристического уравнения являются k 1 = -3 и k 2 = 0 . Корни действительные и различные, следовательно, общее решение ЛОДУ с постоянными коэффициентами имеет вид

    Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Общее решение ЛНДУ второго порядка с постоянными коэффициентами y ищется в виде суммы общего решения соответствующего ЛОДУ и частного решения исходного неоднородного уравнения, то есть, . Нахождению общего решения однородного дифференциального уравнения с постоянными коэффициентами , посвящен предыдущий пункт. А частное решение определяется либо методом неопределенных коэффициентов при определенном виде функции f(x) , стоящей в правой части исходного уравнения, либо методом вариации произвольных постоянных.

    В качестве примеров ЛНДУ второго порядка с постоянными коэффициентами приведем

    Разобраться в теории и ознакомиться с подробными решениями примеров мы Вам предлагаем на странице линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .

    Частным случаем дифференциальных уравнений этого вида являются ЛОДУ и ЛНДУ с постоянными коэффициентами.

    Общее решение ЛОДУ на некотором отрезке представляется линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, .

    Главная сложность заключается именно в нахождении линейно независимых частных решений дифференциального уравнения этого типа. Обычно, частные решения выбираются из следующих систем линейно независимых функций:

    Однако, далеко не всегда частные решения представляются в таком виде.

    Примером ЛОДУ является .

    Общее решение ЛНДУ ищется в виде , где - общее решение соответствующего ЛОДУ, а - частное решение исходного дифференциального уравнения. О нахождении мы только что говорили, а можно определить, пользуясь методом вариации произвольных постоянных.

    В качестве примера ЛНДУ можно привести .

Дифференциальные уравнения высших порядков.

    Дифференциальные уравнения, допускающие понижение порядка.

    Порядок дифференциального уравнения , которое не содержит искомой функции и ее производных до k-1 порядка, может быть понижен до n-k заменой .

    В этом случае , и исходное дифференциальное уравнение сведется к . После нахождения его решения p(x) останется вернуться к замене и определить неизвестную функцию y .

    Например, дифференциальное уравнение после замены станет уравнением с разделяющимися переменными , и его порядок с третьего понизится до первого.

Уравнения, решающиеся непосредственным интегрированием

Рассмотрим дифференциальное уравнение следующего вида:
.
Интегрируем n раз.
;
;
и так далее. Так же можно использовать формулу:
.
См. Дифференциальные уравнения, решающиеся непосредственным интегрированием > > >

Уравнения, не содержащие зависимую переменную y в явном виде

Подстановка приводит к понижению порядка уравнения на единицу. Здесь - функция от .
См. Дифференциальные уравнения высших порядков, не содержащие функцию в явном виде > > >

Уравнения, не содержащие независимую переменную x в явном виде


.
Считаем, что является функцией от . Тогда
.
Аналогично для остальных производных. В результате порядок уравнения понижается на единицу.
См. Дифференциальные уравнения высших порядков, не содержащие переменную в явном виде > > >

Уравнения, однородные относительно y, y′, y′′, ...

Для решения этого уравнения, делаем подстановку
,
где - функция от . Тогда
.
Аналогично преобразуем производные и т.д. В результате порядок уравнения понижается на единицу.
См. Однородные относительно функции и ее производных дифференциальные уравнения высших порядков > > >

Линейные дифференциальные уравнения высших порядков

Рассмотрим линейное однородное дифференциальное уравнение n-го порядка :
(1) ,
где - функции от независимой переменной . Пусть есть n линейно независимых решений этого уравнения. Тогда общее решение уравнения (1) имеет вид:
(2) ,
где - произвольные постоянные. Сами функции образуют фундаментальную систему решений.
Фундаментальная система решений линейного однородного уравнения n-го порядка - это n линейно независимых решений этого уравнения.

Рассмотрим линейное неоднородное дифференциальное уравнение n-го порядка :
.
Пусть есть частное (любое) решение этого уравнения. Тогда общее решение имеет вид:
,
где - общее решение однородного уравнения (1).

Линейные дифференциальные уравнения с постоянными коэффициентами и приводящиеся к ним

Линейные однородные уравнения с постоянными коэффициентами

Это уравнения вида:
(3) .
Здесь - действительные числа. Чтобы найти общее решение этого уравнения, нам нужно найти n линейно независимых решений , которые образуют фундаментальную систему решений. Тогда общее решение определяется по формуле (2):
(2) .

Ищем решение в виде . Получаем характеристическое уравнение :
(4) .

Если это уравнение имеет различные корни , то фундаментальная система решений имеет вид:
.

Если имеется комплексный корень
,
то существует и комплексно сопряженный корень . Этим двум корням соответствуют решения и , которые включаем в фундаментальную систему вместо комплексных решений и .

Кратным корням кратности соответствуют линейно независимых решений: .

Кратным комплексным корням кратности и их комплексно сопряженным значениям соответствуют линейно независимых решений:
.

Линейные неоднородные уравнения со специальной неоднородной частью

Рассмотрим уравнение вида
,
где - многочлены степеней s1 и s2 ; - постоянные.

Сначала мы ищем общее решение однородного уравнения (3). Если характеристическое уравнение (4) не содержит корень , то ищем частное решение в виде:
,
где
;
;
s - наибольшее из s1 и s2 .

Если характеристическое уравнение (4) имеет корень кратности , то ищем частное решение в виде:
.

После этого получаем общее решение:
.

Линейные неоднородные уравнения с постоянными коэффициентами

Здесь возможны три способа решения.

1) Метод Бернулли .
Сначала находим любое, отличное от нуля, решение однородного уравнения
.
Затем делаем подстановку
,
где - функция от переменной x . Получаем дифференциальное уравнение для u , которое содержит только производные от u по x . Выполняя подстановку , получаем уравнение n - 1 - го порядка.

2) Метод линейной подстановки .
Сделаем подстановку
,
где - один из корней характеристического уравнения (4). В результате получим линейное неоднородное уравнение с постоянными коэффициентами порядка . Последовательно применяя такую подстановку, приведем исходное уравнение к уравнению первого порядка.

3) Метод вариации постоянных Лагранжа .
В этом методе мы сначала решаем однородное уравнение (3). Его решение имеет вид:
(2) .
Далее мы считаем, что постоянные являются функциями от переменной x . Тогда решение исходного уравнения имеет вид:
,
где - неизвестные функции. Подставляя в исходное уравнение и накладывая на некоторые ограничения, получаем уравнения, из которых можно найти вид функций .

Уравнение Эйлера

Оно сводится к линейному уравнению с постоянными коэффициентами подстановкой:
.
Однако, для решения уравнения Эйлера, делать такую подстановку нет необходимости. Можно сразу искать решение однородного уравнения в виде
.
В результате получим такие же правила, как и для уравнения с постоянными коэффициентами, в которых вместо переменной нужно подставить .

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Дифференциальные уравнения второго порядка и высших порядков.
Линейные ДУ второго порядка с постоянными коэффициентами.
Примеры решений.

Переходим к рассмотрению дифференциальных уравнений второго порядка и дифференциальных уравнений высших порядков. Если Вы смутно представляете, что такое дифференциальное уравнение (или вообще не понимаете, что это такое), то рекомендую начать с урока Дифференциальные уравнения первого порядка. Примеры решений . Многие принципы решения и базовые понятия диффуров первого порядка автоматически распространяются и на дифференциальные уравнения высших порядков, поэтому очень важно сначала разобраться с уравнениями первого порядка .

У многих читателей может быть предубеждение, что ДУ 2-го, 3-го и др. порядков – что-то очень трудное и недоступное для освоения. Это не так. Научиться решать диффуры высшего порядка вряд ли сложнее, чем «обычные» ДУ 1-го порядка . А местами – даже проще, поскольку в решениях активно используется материал школьной программы.

Наиболее популярны дифференциальные уравнения второго порядка . В дифференциальное уравнение второго порядка обязательно входит вторая производная и не входят

Следует отметить, что некоторые из малышей (и даже все сразу) могут отсутствовать в уравнении, важно, чтобы дома был отец . Самое примитивное дифференциальное уравнение второго порядка выглядит так:

Дифференциальные уравнения третьего порядка в практических заданиях встречаются значительно реже, по моим субъективным наблюдениям в Государственную Думу они бы набрали примерно 3-4% голосов.

В дифференциальное уравнение третьего порядка обязательно входит третья производная и не входят производные более высоких порядков:

Самое простое дифференциальное уравнение третьего порядка выглядит так: – папаша дома, все дети на прогулке.

Аналогичным образом можно определить дифференциальные уравнения 4-го, 5-го и более высоких порядков. В практических задачах такие ДУ проскакивают крайне редко, тем не менее, я постараюсь привести соответствующие примеры.

Дифференциальные уравнения высших порядков, которые предлагаются в практических задачах, можно разделить на две основные группы.

1) Первая группа – так называемые уравнения, допускающие понижение порядка . Налетайте!

2) Вторая группа – линейные уравнения высших порядков с постоянными коэффициентами . Которые мы начнем рассматривать прямо сейчас.

Линейные дифференциальные уравнения второго порядка
с постоянными коэффициентами

В теории и практике различают два типа таких уравнений – однородное уравнение и неоднородное уравнение .

Однородное ДУ второго порядка с постоянными коэффициентами имеет следующий вид:
, где и – константы (числа), а в правой части – строго ноль.

Как видите, особых сложностей с однородными уравнениями нет, главное, правильно решить квадратное уравнение .

Иногда встречаются нестандартные однородные уравнения, например уравнение в виде , где при второй производной есть некоторая константа , отличная от единицы (и, естественно, отличная от нуля). Алгоритм решения ничуть не меняется, следует невозмутимо составить характеристическое уравнение и найти его корни. Если характеристическое уравнение будет иметь два различных действительных корня, например: , то общее решение запишется по обычной схеме: .

В ряде случаев из-за опечатки в условии могут получиться «нехорошие» корни, что-нибудь вроде . Что делать, ответ придется записать так:

С «плохими» сопряженными комплексными корнями наподобие тоже никаких проблем, общее решение:

То есть, общее решение в любом случае существует . Потому что любое квадратное уравнение имеет два корня.

В заключительном параграфе, как я и обещал, коротко рассмотрим:

Линейные однородные уравнения высших порядков

Всё очень и очень похоже.

Линейное однородное уравнение третьего порядка имеет следующий вид:
, где – константы.
Для данного уравнения тоже нужно составить характеристическое уравнение и найти его корни. Характеристическое уравнение, как многие догадались, выглядит так:
, и оно в любом случае имеет ровно три корня.

Пусть, например, все корни действительны и различны: , тогда общее решение запишется следующим образом:

Если один корень действительный , а два других – сопряженные комплексные , то общее решение записываем так:

Особый случай, когда все три корня кратны (одинаковы). Рассмотрим простейшие однородное ДУ 3-го порядка с одиноким папашей: . Характеристическое уравнение имеет три совпавших нулевых корня . Общее решение записываем так:

Если характеристическое уравнение имеет, например, три кратных корня , то общее решение, соответственно, такое:

Пример 9

Решить однородное дифференциальное уравнение третьего порядка

Решение: Составим и решим характеристическое уравнение:

, – получен один действительный корень и два сопряженных комплексных корня.

Ответ: общее решение

Аналогично можно рассмотреть линейное однородное уравнение четвертого порядка с постоянными коэффициентами: , где – константы.

Уравнение вида: называется линейным дифференциальным уравнением высшего порядка, гдеa 0 ,а 1 ,…а n -функции переменной х или константы, причём a 0 ,а 1 ,…а n и f(x) считаются непрерывными.

Если a 0 =1(если
то на него можно разделить)
уравнение примет вид:

Если
уравнение неоднородное.

уравнение однородное.

Линейные однородные дифференциальные уравнения порядка n

Уравнение вида: называются линейными однородными дифференциальными уравнениями порядкаn.

Для этих уравнений справедливы следующие теоремы:

Теорема 1: Если
- решение , то сумма
- тоже решение

Доказательство: подставим сумму в

Т.к производная любого порядка от суммы равна суме производных, то можно перегруппироватся, раскрыв скобки:

т.к y 1 и y 2 – решение.

0=0(верно)
сумма тоже решение.

теорема доказана.

Теорема 2: Если y 0 -решение , то
- тоже решение.

Доказательство: Подставим
в уравнение

т.к С выносится за знак производной, то

т.к решение, 0=0(верно)
Сy 0 -тоже решение.

теорема доказана.

Следствие из Т1 и Т2: если
- решения (*)
линейеая комбинация-тоже решение (*).

Линейно независимые и линейно зависимые системы функций. Определитель Вронского и его свойства

Определение: Система функций
- называется линейно независимой, если линейная комбинациякоэффициенты
.

Определение: Систему функций
- называют линейно зависимой, еслии есть коэффициенты
.

Возьмём систему двух линейно зависимых функций
т.к
или
- условие линейной независимости двух функций.

1)
линейно независимы

2)
линейно зависимы

3)линейно зависимы

Определение: Дана система функций
- функций переменной х.

Определитель
-определитель Вронского для системы функций
.

Для системы двух функций определитель Вронского выглядит следующим образом:

Свойства определителя Вронского:


Теорема: Об общем решении линейного однородного дифференциального уравнения 2 порядка.

Если y 1 и y 2 – линейно независимые решения линейного однородного дифференциального уравнения 2 порядка, то

общее решение имеет вид:

Доказательство:
- решение по следствию из Т1 и Т2.

Если даны начальные условия то идолжны находится однозначно.

- начальные условия.

Составим систему для нахождения и. Для этого подставим начальные условия в общее решение.

определитель этой системы:
- определитель Вронского, вычисленный в точке х 0

т.к илинейно независимы
(по 2 0)

т.к определитель системы не равен 0, то система имеет единственное решение и инаходятся из системы однозначно.

Общее решение линейного однородного дифференциального уравнения порядка n

Можно показать что уравнение имеет n линейно независимых решений

Определение: n линейно независимых решений
линейного однородного дифференциального уравнения порядкаn называется фундаментальной системой решения.

Общее решение линейного однородного дифференциального уравнения порядкаn , т.е (*) – линейная комбинация фундаментальной системы решений:

Где
- фундаментальная система решения.

Линейные однородные дифференциальные уравнения 2 порядка с постоянными коэффициентами

Это уравнения вида:
, гдеp и g – числа(*)

Определение: Уравнение
- называетсяхарактеристическим уравнением дифференциального уравнения (*) – обычное квадратное уравнение, решение которого зависит от D, возможны следующие случаи:

1)D>0
- два действительных различных решения.

2)D=0
- один действительный корень кратности 2.

3)D<0
- два комплексно сопряжённых корня.

Для каждого из этих случаев укажем фундаментальную систему решений, составленную из 2 функций и.

Будем показывать что:

1) и- ЛНЗ

2) и- решение (*)

Рассмотрим 1 случай D>0
- 2 действительных различных корня.

Х
арактеристическое уравнение:

В качестве ФСР возьмём:

а) покажем ЛНЗ

б) покажем, что - решение (*), подставим



+p
+g
=0

верное равенство

решение (*)

аналогично показывается для y 2 .

Вывод:
- ФСР (*)
общее решение

Рассмотрим 2случай: D=0
- 1 действительный корень кратности 2.

В качестве ФСР возьмём:

ЛНЗ:
ЛНЗ есть.

-решение уравнения (см. 1 случай). Покажем что
- решение.

подставим в ДУ

-решение.

Вывод: ФСР

Пример:

3 случай : D<0
- 2 комплексно сопряжённых корня.

подставим
в характ. уравнение

комплексное число равно 0, когда действительная и мнимая часть равны 0.

- будем использовать.

Покажем, что
- образуют ФСР.

А)ЛНЗ:

Б)
-решение ДУ

верное равенство
- решение ДУ.

Аналогично показывается, что тоже решение.

Вывод: ФСР:

Общее решение:

Если заданы н.у.

- то сначала находят общее решение
, его производную:
, а потом в эту систему подставляют н.у и находяти.

Н.у:

Публикации по теме