Система идентификации по отпечаткам пальцев. Дактилоскопия - это способ идентификации человека по отпечаткам пальцев

Для каких целей подходит эта технология?

Распознавание отпечатков пальцев является исключительно адаптивным способом идентификации и подходит для разностороннего применения и, в том числе, для объектов, где традиционно используются ключи, карты доступа и пароли. Эта технология уже используется в оборудовании контроля прохода, в автоматах выдачи инструментов, в складских помещениях, при оказании сетевых услуг и на многих других объектах. Даже новый смартфон Apple iPhone 5s оборудован сканером отпечатков пальцев. Технология идентификации по отпечаткам пальцев используется повсеместно уже сейчас.

В чем заключаются преимущества технологии идентификации по отпечаткам пальцев?

Отпечаток пальца - это уникальный идентификатор личности. Если сравнивать отпечаток пальца и ключ, то можно сказать, что у каждого человека есть десять ключей, поскольку все отпечатки пальцев отличны друг от друга. Даже если вы порезали палец или вся рука находится в гипсе, у вас остается достаточное количество пальцев для целей идентификации. Идентификация с помощью отпечатка – весьма надежный способ, так как отпечатки пальцев у всех людей уникальны. Даже у однояйцевых близнецов разные отпечатки пальцев.

По сравнению с другими методами идентификации, когда используется ключ, карта доступа, цифровой код или пароль, биометрический метод идентификации по отпечатку пальца обеспечивает высокую степень защиты. Отпечаток невозможно потерять, забыть или украсть. Этот способ также отличает высокая практичность, поскольку ничего не нужно носить с собой – в карманах ничего нет, больше не приходится рыться в сумке, да и брелок от ключа можно выбросить. Кроме того, это позволяет значительно сократить расходы, связанные с организацией контроля доступа. Для функционирования систем управления доступом в крупных организациях, например, на заводах, в офисах или фитнес-центрах, больше не нужны карты доступа или ключи, которые необходимо раздавать, собирать или удалять информацию о них из реестра в случае потери. Так, можно зарегистрировать отпечатки пальцев посетителей и предоставить им доступ лишь на один день.

Как отпечатки пальцев могут служить средством идентификации?

При распознавании происходит сравнение отпечатка пальца с ранее зарегистрированными данными. Данные могут храниться в базе данных системы идентификации, в чипе паспорта или в памяти карты доступа. Функцию идентификации может выполнять установленный на входе считыватель отпечатков пальцев, подключенный к компьютеру датчик или встроенный сканер смартфона.

Существуют два метода идентификации: идентифицируемый отпечаток пальца сравнивается с различными образами отпечатков, сохраненными в системе, либо с зарегистрированным отпечатком конкретного человека. Примером первого варианта может служить система контроля и управления доступом предприятия, где отпечаток пальца сопоставляется с зарегистрированными образами, чтобы подтвердить право доступа идентифицируемого лица. Примером второго варианта является система лучевой терапии, где цель проверки – удостовериться в том, что план лечения предназначен именно для этого пациента, пришедшего на сеанс.

Как происходит идентификация отпечатка пальца?

Идентификация по отпечаткам пальцев основана на распознавании образа, когда папиллярные узоры сравниваются с зарегистрированными данными. Процесс идентификации выполняется в три этапа.

1. Формируется изображение отпечатка пальца. Захват изображения может производиться с помощью встроенной камеры считывателя, либо с помощью регистрации разности потенциалов электрического поля между бугорками и впадинами папиллярного узора. Возможно применение комбинаций методов. В результате получается цифровой черно-белый снимок узоров отпечатка пальца.

2. Изображение отпечатка пальца преобразуется в математическую модель, в которой уникальные признаки, такие как дуги, завитки, петли и расстояния между ними, сохраняются в виде цифрового кода.

3. Производится сравнение идентифицируемой цифровой модели с шаблонами в базе данных и выполняется поиск соответствий.

Что происходит после идентификации?

В преобладающем большинстве случаев система идентификации по отпечаткам пальцев является частью какой-либо другой системы контроля, например, системы запирания. В результате идентификации устанавливается личность человека, после чего система может выполнить нужные мероприятия, например, открыть замок, разрешить доступ пользователю к программе или разрешить загрузку компьютера.

Что влияет на эффективность идентификации по отпечаткам пальцев?

Кожа – податливый и гибкий материал, и эти характеристики привносят определенные сложности в процесс идентификации. Так, например, сухость и температура кожи, а также сила прижима пальца, влияют на качество изображения отпечатка. Если палец прижат слишком сильно, рисунок отпечатка меняется и распознавание папиллярных линий затрудняется. Сухость и температура поверхности влияют на эластичность кожи, что, в свою очередь, определяет качество изображения. За последние годы технологии идентификации по отпечаткам пальцев и распознавания образа сильно шагнули вперед, поэтому даже в большинство проблемных случаев идентификация производится с высокой степенью надежности.

Точность регистрации данных об отпечатке оказывает значительное влияние на качество последующей идентификации. Поэтому регистрацию следует производить тщательно, а в случае возникновения каких-либо затруднений ее рекомендуется выполнить повторно.

Сканеры существенно отличаются друг от друга по воздействию загрязнений на точность сканирования. На объектах, где нет возможности регулярно выполнять очистку биометрических считывателей, стоит отдать предпочтение технологии, для которой не страшны пыль и грязь.

Можно ли украсть отпечаток пальца?

В соответствии со стандартами защиты информации в базах данных современных коммерческих системах распознавании личности по отпечаткам пальцев хранится не изображение отпечатка пальца, а его цифровая модель, которая содержит лишь несколько процентов из всего объема информации об отпечатке. Поэтому на основе сохраненной цифровой модели нельзя восстановить изображение отпечатка пальца. Исключение составляют системы государственного контроля, например, реестр отпечатков пальцев в полиции или паспорта, в которых отпечаток пальца приводится в виде изображения.

Насколько быстро и надежно выполняется идентификация по отпечаткам пальцев?

В настоящее время распознавание по отпечаткам пальцев выполняется очень быстро. Технология настолько усовершенствовалась, что время идентификации измеряется в долях секунды. Особенно эффективны электронные считыватели, которые идентифицируют отпечатки удивительно быстро.

Надежность технологии находится на высоком уровне - практически любые отпечатки могут быть распознаны. Тем не менее, несмотря на то, что уровень надежности почти достиг 100 %, в ближайшие годы не ожидается, что станет возможным распознать абсолютно любой отпечаток пальца. Так, у людей, занятых в определенных отраслях, например, там, где кожа на кончиках пальцев разъедается или многократно подвергается воздействию вредных химических веществ, степень повреждения может препятствовать считыванию достаточного количества точек для идентификации. После разовых повреждений отпечаток пальца восстанавливается, так что однократные повреждения или малое их количество не влияют на точность идентификации.

Подходит ли технология идентификации по отпечаткам пальцев для моей деятельности?

Пользователи систем идентификации по отпечаткам пальцев обычно уже не хотят возвращаться к традиционным системам контроля. Главными факторами удовлетворенности пользователей являются легкость и простота использования. Поэтому мы настоятельно рекомендуем воспользоваться технологией идентификации по отпечаткам пальцев. Продукция компании Deltabit позволяет использовать отпечатки пальцев для открытия дверей. Система Deltabit Gatekeeper Lite представляет собой продукт, с помощью которого можно заменить ключ от вашего дома отпечатком пальца. Deltabit Gatekeeper Pro – это система контроля и управления доступом на основе биометрической идентификации для предприятий. Оба продукта получили самые положительные оценки потребителей.


"Научно-технические статьи" - подборка научно-технических статей радиоэлектронной тематики: новинки электронных компонентов , научные разработки в области радиотехники и электроники , статьи по истории развития радиотехники и электроники , новые технологии и методы построения и разработки радиоэлектронных устройств, перспективные технологии будущего, аспекты и динамика развития всех направлений радиотехники и электроники , обзоры выставок радиоэлектронной тематики.

Стремление защитить от посягательств собственную жизнь, жилище, имущество и финансы свойственно каждому человеку. Но привычные методы удостоверения личности - предъявление паспорта или собственноручная подпись - оказываются недостаточно надежными, поскольку документы могут быть потеряны, украдены или подделаны с использованием современных технологий, а подписи - сфальсифицированы. Жизнь заставляет искать новые, более надежные методы.

Введение

В свете последних событий, происходящих в мире, особенно в связи с ростом активности международного терроризма, вопросам безопасности уделяется все более пристальное внимание. Один из важнейших разделов безопасности - установление подлинности личности. Задача идентификации человека становится критической даже во многих повседневных ситуациях. Все чаще приходится сталкиваться со случаями мошенничества лиц, выдающих себя за других при попытке входа в гостиничные номера, получении доступа в сети ЭВМ или совершении интерактивной покупки.

Биометрическое опознание

Один из возможных способов идентификации - биометрическое установление подлинности субъекта, основанное на измерении уникальных и постоянных личностных параметров. Основные характеристики человека могут быть разделены на две группы - поведенческие и физиологические. К поведенческим характеристикам относятся, например, манера разговора, стиль работы на клавиатуре компьютера или почерк, а в группу уникальных физиологических параметров входят отпечатки пальцев, геометрия ладони, радужная или сетчатая оболочка глаза, внешний вид лица. Практические методы биометрии опираются больше на физиологические характеристики, поскольку поведенческие все-таки подвержены изменениям в зависимости от состояния человека. К примеру, простуда может изменить не только тембр голоса, но и манеру речи: даже словоохотливые люди избегают при этом излишних разговоров.

В то же время, многие части тела человека достаточно уникальны и могут использоваться для идентификации. Так, при поиске приятеля в толпе мы используем некий общий алгоритм узнавания лица, реализуемый нашим интеллектом. Более конкретный упрощенный алгоритм вполне осуществим с помощью компьютера. Лицо человека снимается камерой, и определенные лицевые формы сопоставляются с информацией, имеющейся в базе данных.

Человеческий глаз также является собранием множества уникальных данных. Соответственно фокусируя камеру, можно "срисовать" глаз для сопоставления с изображением образца радужной оболочки. А можно с использованием подсвечивающего сканера сличать отраженный от глазного дна свет со "слепком" сетчатки. Не менее уникальна рука. Биометрическими характеристиками являются геометрия и топология ее поверхности. Особую роль играют отпечатки пальцев.

Отпечатки пальцев были юридически приняты для идентификации личности более столетия назад, а опознание по отпечатку активно используется в криминологии уже с двадцатых годов прошлого века. Они уникальны для каждого индивидуума, не могут быть изменены и используются там, где недопустимы ошибки идентификации личности, например, в уголовном праве или при организации доступа с высшим уровнем защиты.

Исторически для снятия отпечатка пальца используются системы с оптическими датчиками, но долгое время они оставались весьма дорогостоящими, крупногабаритными и недостаточно надежными. В конце 90-х годов появление недорогих, основанных на иных принципах устройств для сбора данных об отпечатке пальца привело к прогрессу технологий идентификации личности по отпечатку - от ограниченного использования до широкого применения в ряде новых областей.

Технологии сканирования отпечатка пальца

Как уже было упомянуто, старейшей технологией является оптическая. Сканирование отпечатка пальца мини-камерами на ПЗС или КМОП-чипе позволило существенно уменьшить стоимость систем идентификации. Но этот способ снятия отпечатка сталкивается с некоторыми трудноразрешимыми проблемами: получаемый образ зависит от окружающего освещения, на границах образа возможны искажения, датчик может быть относительно легко "обманут" (некоторые дешевые датчики можно "дурачить" печатной копией, сделанной на обычном копире). Остаются проблемы и с размерами сканера. Датчик не может быть меньше, чем фокусное расстояние камеры. Среди главных преимуществ оптических систем можно еще раз упомянуть относительно низкую цену и практическую неуязвимость к воздействию электростатического разряда.

Абсолютно новой является технология использования электромагнитного поля. Датчик излучает слабый электромагнитный сигнал, который следует по гребням и впадинам отпечатка пальца и учитывает изменения этого сигнала для составления образа отпечатка. Такой принцип сканирования позволяет просматривать рисунок кожи под слоем омертвевших клеток, что приводит к хорошим результатам при распознавании бледных или стершихся отпечатков. Остается проблема отсутствия приемлемого соотношения между размером датчика и его разрешающей способностью.

Еще одна перспективная технология, которую следует упомянуть, - ультразвуковая. Трехмерный ультразвуковой сканер измеряет пересеченную поверхность пальца своего рода радаром. Этот метод сканирования может быть особенно удобен, например, в здравоохранении. Он не требует касания каких-либо считывающих устройств датчика стерильными руками, а отпечаток легко считы-вается даже через резиновые или пластиковые перчатки хирурга. Главное неудобство ультразвуковой технологии - ее высокая стоимость и длительное время сканирования.

Существуют и другие методы, либо использовавшиеся в прошлом, либо только разрабатываемые, однако объем журнальной статьи не позволяет рассмотреть их подробнее. Остановимся на одном из наиболее перспективных методов.

Емкостное сканирование отпечатка пальца

Емкостные сканеры отпечатка пальца изготавливают на кремниевой пластине, которая содержит область микроконденсаторов. Они расположены равномерно в квадратной или прямоугольной матрице. Прямоугольные датчики считаются более подходящими, поскольку больше соответствуют форме отпечатка. К тому же расширяется область, на которой читается образ отпечатка пальца, следовательно, увеличивается количество получаемой информации. Среди датчиков, доступных сегодня на рынке, самой большой областью чтения обладают датчики TouchChip компании STMicroelectro-nics. Поле чипа имеет размер 256 х 360 конденсаторов, то есть объем информации об отпечатке превышает 92 Кб. Один конденсатор занимает квадратную область размером 50 х 50 мкм. Из таких конденсаторов и формируется датчик, фиксирующий образ отпечатка с разрешением около 500 dpi.

Обычно всю кремниевую область защищает специально разработанное и запатентованное изготовителем датчика покрытие. Это очень твердый и стойкий слой, способный уберечь кремниевые схемы, но при этом настолько тонкий, что позволяет пальцу приближаться к ним максимально. Некоторые продавцы доказывают качество покрытия, публикуя результаты тестов, где утверждается, что защитный слой выдерживал более миллиона контактов.

Прежде чем приступить к детальному описанию емкостной технологии, выясним, какие преимущества и недостатки следуют из того, что палец находится в непосредственной близости к кристаллу ИС.

Недостатком может быть вероятность повреждения датчика электростатическим разрядом. В обычных микросхемах эту опасность устраняет корпус, но датчик отпечатка пальца может быть закрыт лишь чрезвычайно тонким покрытием. Чтобы отвести разряд, применяются дополнительные меры, например заземление. В современных датчиках эта технология настолько совершенна, что сканеры отпечатка пальца способны противостоять разрядам свыше 15 кВ (разряд такой величины, к примеру, от наэлектризованной одежды, весьма маловероятен).

Но почти непосредственное касание кристалла дает и некоторые преимущества. Например, становится легче отличить реальный отпечаток живого пальца от фальшивки или мертвого. Существует большое количество характеристик отпечатка живого пальца, которые могут быть измерены (например, температура, давление крови, пульс). Комбинируя подобные измерения и внедряя их в практику, можно получить более устойчивый к обману сканер отпечатка пальца. Использование соответствующего программного обеспечения дополнительно повышает способность сканера противостоять попыткам обмана.

Существует два основных способа емкостного сканирования - пассивный и активный. Оба основаны на заряде и разряде конденсаторов в зависимости от расстояния до кожи пальца в каждой отдельной точке поля и считывании соответствующего значения. Это возможно, поскольку размеры гребней и впадин на коже достаточно велики. Средняя ширина гребня - около 450 мкм. Сравнительно небольшой размер конденсаторных модулей (50 х 50 мкм) позволяет замечать и фиксировать различия емкости даже на близких точках кожи.

Пассивный принцип сканирования

В пассивных кремниевых сканерах каждая ячейка имеет лишь одну из пластин конденсатора. Другую пластину образует поверхность пальца. Сканирование состоит из двух этапов. На первой стадии, когда палец касается поверхности чипа, пластины датчика заряжаются (обычно целый ряд одновременно) и на так называемых схемах выборки и хранения запоминаются значения напряжения на каждой из них. На втором этапе, когда палец убирается, ряды пластин датчика разряжаются и в другом комплекте схем выборки и хранения запоминаются остаточные значения напряжения на пластинах. Разница между зарядным и остаточным напряжениями пластины пропорциональна емкости ячейки датчика. Последовательно, ряд за рядом сосканированные и оцифрованные ячейки создают образ отпечатка пальца. Такой способ доступа к пластинам минимизирует потребность в схемах выборки и хранения до двух для каждого ряда.

Подобный сканер допускает варьирование в определенных пределах величин зарядного и разрядного потенциалов, а также времени задержки между этапами сканирования, чтобы обеспечивать возможность считывания отпечатка пальца в различных состояниях (влажные, сухие). Но даже с использованием такого регулирования контроль образа не может быть столь же полным, как при активной технологии, где управляются обе пластины конденсаторов.

Активный принцип сканирования

Ячейка датчика содержит обе пластины конденсатора, соединенные в активную емкостную схему обратного питания через инвертор (инвертирующий усилитель), который играет роль накопителя заряда: одна пластина связана с входом инвертора, а другая - с выходом (см. рис. 1). Функция накопителя заключается в преобразовании емкости обратного питания в напряжение на выходе, которое можно оцифровывать.

Рис. 1. Активное емкостное сканирование

Активный датчик, так же как и пассивный, работает в два этапа. На первом этапе ключом "Сброс" замыкаются вход и выход инвертора, сбрасывая схему в начальное состояние. Во второй стадии на пластину конденсатора, связанную с входом накопителя, подается калиброванный заряд, создавая между пластинами электромагнитное поле. Кожа пальца взаимодействует с полем, изменяя действующую емкость. В зависимости от наличия гребня или впадины отпечатка емкость конденсатора соответственно уменьшается или увеличивается. Значение этой результирующей емкости оцифровывается.

Поскольку каждая из ячеек датчика имеет собственный накопитель заряда, пикселы "картинки" адресуются методом произвольного доступа. Это позволяет использовать дополнительные функции обработки образа отпечатка (например, просмотр только выделенной области или предварительный просмотр - более быстрый, но с меньшим разрешением).

Активная технология сканирования обеспечивает намного более высокую устойчивость к внешним воздействиям, имеет более высокое отношение сигнал-шум, и поэтому датчики способны воспринимать более широкий диапазон параметров отпечатка вне зависимости от состояния пальца.

Обработка образа и распознавание отпечатков

Образ отпечатка пальца, как правило, сохраняется в двоичном коде, где каждый пиксел рисунка описывается 8 битами, то есть 256 оттенками серого цвета. В передовых системах сканирования цифровой образ отпечатка обрабатывается с помощью специального алгоритма улучшения изображения. Этот алгоритм обеспечивает обратную связь с датчиком для регулирования параметров сканирования. Когда датчик фиксирует окончательный образ, алгоритм настраивает контрастность и четкость изображения отпечатка для получения наилучшего качества.

Итак, после оцифровки имеется четкая увеличенная "картинка" отпечатка пальца. Такой образ не слишком подходит для сопоставления отпечатков, потому что занимает слишком много памяти (около 90 Кб) и его обработка при сравнении требовала бы повышенной вычислительной мощности. Поэтому из этой информации необходимо делать выборку лишь тех сведений, которые необходимы для сопоставления отпечатков. Результат такой операции называется шаблоном отпечатка пальца и имеет объем 250... 1200 байт, в зависимости от метода опознания.

Методы опознания отпечатка пальца основаны на сравнении с образцами или на использовании характерных деталей. Некоторые системы успешно комбинируют оба метода. При опознании по образцу в базе хранятся отобранные части образа отпечатка пальца. Распознающий алгоритм выбирает те же самые области только что введенного отпечатка и сравнивает с имеющимися данными для установления подлинности. Размер шаблона - около 1 Кб.

При опознании по деталям из образа извлекаются только специфические места, где найдена особенность (деталь). Обычно это либо окончание гребня, либо его раздвоение (см. рис. 2). Содержание шаблона в этом случае составляют относительные координаты и сведения об ориентации детали. Распознающий алгоритм отыскивает и сравнивает между собой соответствующие детали. Ни поворот отпечатка пальца, ни его параллельный перенос (сдвиг) не влияют на функционирование системы, поскольку алгоритм работает с относительными величинами. Размер шаблона в этом случае уменьшается примерно до 300 байт. Обработка такого небольшого количества данных возможна даже в системах с невысокой скоростью процессора и ограниченной памятью.

Распознающие алгоритмы и их разметка

На рынке есть достаточно большое количество алгоритмов, опознающих образ по деталям. Необходимо выяснить, что же является критериями их качества.

Если выражать соответствие двух сравниваемых шаблонов отпечатков пальцев в процентах, то идеальному совпадению (два шаблона одного пальца) можно присвоить значение 100%, а абсолютное несовпадение (два шаблона разных пальцев) следует обозначить нулем (0%). К сожалению, не все совпадения идеальны, а несовпадения абсолютны. Обычно степень совпадения не приходится на крайние точки шкалы. Возникает проблема с неточными и неполными совпадениями. Наиболее сложно сопоставлять похожие шаблоны, поскольку значения групп оценочных величин для совпадений и несовпадений перекрываются, накладываются друг на друга в районе середины шкалы. Это - критическая область, поскольку в подобном случае невозможно решить точно: совпали шаблоны или нет. Выходом из такой "шизофренической" ситуации является установление так называемого "порога", который однозначно определяет значение оценки, отделяющей совпадение шаблонов от несовпадения. Это облегчает принятие решения, но, с другой стороны, может приводить к ошибкам в системе, поскольку обе группы оценочных величин могут оказаться ниже установленной границы.

Рис. 2. Детали отпечатка

Подобные ошибки называются ошибочным опознанием и ошибочным неопознанием соответственно. Степень таких ошибок специфична для каждого распознающего алгоритма и обычно учитывается как FMR (False Match Rate) - вероятность ошибочного опознания и FNMR (False Non-Match Rate) - вероятность ошибочного неопознания. В системах безопасности их также принято называть FAR (False Accept Rate) - вероятность ошибочного допуска и FRR (False Reject Rate) - вероятность ошибочного отказа. FMR и FNMR взаимно противоположны: когда одно значение уменьшается, другое увеличивает ся (что равносильно перемещению "порога" вверх и вниз по шкале соответствия). Качество распознающих алгоритмов может оцениваться сравнением значения FMR при фиксированной FNMR или наоборот. Иногда для оценки приводятся дополнительные параметры, например, уровень равновероятной ошибки - точка на шкале соответствия, где значения FMR и FNMR равны.

Таблица 1. Сенсоры и их технические характеристики
Характеристики Сенсоры
TCS1AD TCS2AF
Активная зона сенсора, мм 18,0x12,8 10,4 х 14,4
Общая площадь, пикселов 256 х 360 208 х 288
Площадь пиксела, мкм 50
Разрешение, dpi 508
Частота съема информации, кадр/с 15 20
Максимальный статический потенциал, кВ ±8 ±15
Потребление тока Номинал, мА 20
Stand-by, мА 7
Sleep, мА 1
Размеры корпуса Full, мм 27 х 27 х 4,5 27 х 20,4 х 3,5
Compact, мм 27x18,4x4,5
Соединитель Гибкий кабель 20-выводной гибкий соединитель/Гибкий кабель
Интерфейс ввода/вывода 8-бит RAM-интерфейс
Характеристики окружающей среды Рабочая температура, °С 0...40
Температура хранения, °С -4...85
Влажность 5...95%RH @ 30 °С

Значения вышеупомянутых характеристик находятся в сильной зависимости от базы данных отпечатков пальцев, используемой при тестировании распознающего алгоритма для оценки его качества. Можно получить очень хорошие результаты даже при слабом алгоритме, если для тестирования отобраны только высококачественные отпечатки. Естественно и то, что даже удачный алгоритм может давать плохие результаты на базе данных, содержащей отпечатки пальцев лишь низкого качества. Поэтому сравнение распознающих алгоритмов может осуществляться лишь при условии, что для их тестирования используется одна и та же база. Тестирование алгоритма, определение его контрольных точек - порога, FMR, FNMR и др. - называют разметкой. Для получения полезных и реалистичных результатов разметки необходимо использовать как можно большую базу данных отпечатков пальцев (по крайней мере, тысяч людей), которая была бы собрана в различных регионах мира у представителей разных рас, возрастов и занятий в различных условиях (влажность, температура и др.).

Будущее - объединенный модуль

Технология опознания по отпечатку пальца имеет множество преимуществ, что объясняет все большее расширение области ее применения. Уже сегодня есть ноутбуки, карманные компьютеры, дверные замки, торговые автоматы и различная компьютерная периферия со встроенными датчиками отпечатка пальца. Развитие технологии ведет к уменьшению размера и стоимости датчиков, что открывает им путь во многие другие сферы использования - например, в мобильных телефонах, кассовых терминалах или автомобильных замках зажигания.


Рис. 3. Биометрическая система защиты STTouchChip

Компания STMicroelectronics предлагает ST TouchChip - биометрическую подсистему защиты "под ключ", которую можно легко внедрить в изделия общего и частного применения (см. рис. 3). TouchChip, PerfectPrint и PerfectMatch - это современные технологии, обеспечивающие полный диапазон типичных биометрических системных функций: снятие отпечатка пальца, оптимизацию образа и принятие решения о доступе. TouchChip - кремниевый датчик отпечатка пальца - фиксирует изображения отпечатка пальца. Он основан на патентованной технологии компании - активном емкостном пиксел-датчике, обеспечивающем высокое отношение сигнал/шум. Комплекс программ PerfectPrint управляет датчиком с целью оптимизации образа отпечатка пальца в зависимости от условий окружающей среды или типа кожи. PerfectMatch - набор программных алгоритмов, которые решают две существенные биометрические задачи: выделение шаблонов из образа отпечатка пальца и распознавание соответствия отпечатков живых пальцев предварительно сохраненным образам.

PerfectMatch поставляется с прикладным программным интерфейсом (API), что позволяет интегрировать биометрические подсистемы TouchChip в разработки заказчика без детального знания всех компонентов системы. Эта открытая архитектура значительно упрощает интеграцию системы биометрии в существующие приложения и сокращает срок внедрения.

Цель дальнейшего развития - объединение датчика отпечатка пальца с мощным микропроцессором и памятью. Это позволит создать распознающий модуль допуска, способный к выполнению всей задачи целиком: от считывания отпечатка до опознания объекта - без компьютера. Подобные проекты уже разрабатываются. Компания STMicroelectronics недавно анонсировала устройство, именуемое TouchChip Trusted Fingerprint Module Biometric Subsystem, которое должно появиться к концу 2002 г. Подобный интегрированный модуль исключит усилия, затрачиваемые ныне на интеграцию отдельных компонентов, что даст еще более существенный толчок всему рынку систем биометрического опознания по отпечатку пальца.

Идентификация по отпечатку пальца скоро станет частью нашей повседневной жизни. Давайте же надеяться на увеличение безопасности и удобства, которые она принесет.


Дата публикации: 01.09.2004

Мнения читателей
  • vlab / 04.08.2013 - 00:41
    по не полному отпечатку пальца можно узнать человека
  • Олега) / 21.11.2012 - 10:59
    Интересная статья)Последовательно спланирована, и довольно легка в чтении.Приятно было прочесть.
  • Анатолий / 18.12.2008 - 14:31
    Нужна схема!
  • Максим / 08.07.2007 - 19:17
    В целом, статья выглядит неплохо. С точки зрения интересующегося пользователя весьма внятное толкование темы. Если ограничится более профессиональными познаниями, то отсутствие конкретики в самой сути проблемы, например, алгоритма распознавания. Очень интересен подход, применяемый в таких системах. Я бы был очень рад, если бы такой материал также выложили на обном из сайтов. Удачи!

Сафин И.Т, Старухин Г.А., студенты Уфимского государственного колледжа радиоэлектроники

Туктаров Р.Ф., научный руководитель, научный сотрудник ИФМК УНЦ РАН

Студентами колледжа радиоэлектроники Сафиным И.Т. и Старухиным Г.А. было разработано устройство, позволяющее определять личность человека по отпечатку его большого пальца. В основу разработки положены методы дактилоскопии, которая в свою очередь является частью более общей методологии, называемой биометрией.

Биометрия – наука о характерных особенностях человеческого тела. К таковым относят отпечатки пальцев, радужная оболочка глаза, тембр голоса, запах и др. Многие из таких параметров уникальны для каждого человека, а, следовательно, имея возможность определить их, возможно практически безошибочно определить человека, проходящего идентификацию.

Отпечатки пальцев, как наиболее популярные биометрические характеристики человека, стали применяться еще в XIX веке. Первыми работами на эту тему были работы профессора Бронеславского университета Я.Э. Пуркинье и английского антрополога Френсиса Гальтона. Пуркинье первым описал папиллярные узоры поверхности пальцев человека, а Гальтон разработал первую систему классификации признаков.

Состав устройства.

Устройство идентификации личности по отпечаткам пальцев состоит из

1) сканера отпечатков пальцев,

2) программы-обработчика, позволяющей производить анализ и идентификацию отпечатков.

Разработкой сканера устройства занимался студент колледжа радиоэлектроники Сафин И.Т.

Структурная схема устройства идентификации личности по отпечаткам пальцев:

На схеме показаны ПК, Веб-камера, схема задержки, рабочая поверхность, подсветка и блок питания.

Структурная схема устройства идентификации личности по отпечаткам пальцев включает в себя блоки:

ПК – в нем происходит обработка полученного с устройства изображения;

Веб-камера – снимает отпечаток пальца;

Схема задержки – задерживает сигнал нажатия при прикладывании пальца к рабочей поверхности, что необходимо для автоматической настройки светочувствительности камеры и для того чтобы палец успел «растечься» по рабочей поверхности;

Исполнительное устройство – служит для прикладывания пальца и для нажатия на кнопку веб-камеры которая делает снимок;

Подсветка – служит для подсветки рабочей области -внутри корпуса устройства, чтобы выделить дорожки и впадины на отпечатке прикладываемом на рабочую поверхность;



Блок питания – служит для питания цепи подсветки и схемы задержки.

В данном устройстве используется эффект нарушенного полного внутреннего отражения, что позволяет получать снимки поверхности пальца в которых четко видны границы между дорожкой и бороздкой. Этот эффект получается при расположении камеры и источника освещения так как показано на рисунке ниже.

Данное устройство представляет собой «коробочку» размерами 70*100*100 мм. Графически размеры и вид устройства показаны ниже на рисунке.

Описание работы устройства.

При прикладывании пальца к стеклу и нажатии на него, происходит замыкание кнопок, в результате чего «запускается» схема задержки. Схема задержки задерживает сигнал нажатия на кнопки примерно на 0,5 секунд, после чего срабатывает реле которое и замыкает кнопку «затвора» веб-камеры. Происходит снимок отпечатка пальца и на экране монитора ПК оно показывается.

Разработкой программы анализа и идентификации занимался студент колледжа радиоэлектроники Старухин А.Г.

Программа реализована на платформе PC, т.е. для работы ей необходим персональный компьютер, взаимодействующий со сканером по кабелю USB. Минимальные системные требования: процессор Pentium 4 1.8 ГГц, ОЗУ 256 МБ, наличие порта USB, ОС Windows XP или более поздние версии.

Описание программы.

Анализ образа отпечатка подразумевает выделение из него некоторых существенных признаков, свойственных отпечаткам пальца человека. Отпечаток состоит из папиллярных линий, образующих папиллярный узор, уникальный для каждого человека. К существенным признакам отпечатка относятся, например, направление этих линий, их окончание или разрывы. Все признаки делятся на две группы: глобальные и локальные.

Глобальные признаки - те, которые можно увидеть невооружённым глазом:

Папиллярный узор.

Область образа - выделенный фрагмент отпечатка, в котором локализованы все признаки.



Ядро - пункт, локализованный в середине отпечатка или некоторой выделенной области.

Пункт "дельта" - начальная точка. Место, в котором происходит разделение или соединение бороздок папиллярных линий, либо очень короткая бороздка (может доходить до точки).

Тип линии - две наибольшие линии, которые начинаются как параллельные, а затем расходятся и огибают всю область образа.

Счётчик линий - число линий на области образа, либо между ядром и пунктом "дельта".

Локальные признаки, они же минуции, определяют пункты изменения структуры папиллярных линий (окончание, раздвоение, разрыв и т.д.), ориентацию папиллярных линий и координаты в этих пунктах. Каждый отпечаток содержит до 70 минуций.

После определения существенных признаков отпечатка производят его сравнение с другими отпечатками. В этом и заключатся процесс идентификации.

Поэтапно процесс работы программы можно описать следующим образом. Управляющий сигнал инициирует процесс. Сканер отпечатка создает изображение – образ отпечатка, и передает его на ПК. На стороне ПК программа производит нормализацию образа, до приведения его к стандартному виду, после чего образ передается на обработку. В процессе обработки происходит чтение образа, выделение локальных и глобальных признаков отпечатка. Такие признаки записываются в вектор отпечатка. Далее, в зависимости от управляющего сигнала, происходит либо добавление пользователя в базу данных, либо его идентификация. При добавлении все данные о пользователе, включая вектор отпечатка, формируют в представление базы данных и через элемент обращения к БД, записываются в базу. При идентификации производится запрос на выборку из БД. Из выборки извлекаются векторы отпечатков, которые и сравниваются с входным вектором. Если идентичность двух сравниваемых векторов выше определенного порогового значение, то векторы считаются идентичными, и пользователь идентифицируется согласно текущей записи. Если ни один вектор из выборки не соответствует входному вектору, то пользователь считается не прошедшим идентификацию.

Для обеспечения конфиденциальности информации предлагались различные средства авторизации и аутентификации пользователя для предоставления ему необходимого физического доступа к данным, финансовым средствам и т.п. В основе большинства современных систем аутентификации лежит принцип получения, сбора и измерения биометрической информации, то есть информации об определенных физиологических характеристиках человека.

реимущество биометрических систем идентификации по сравнению с традиционными (например, PIN-кодовыми системами или системами доступа по паролю) заключается в том, что идентифицируется собственно человек. Используемая в этих системах характеристика является неотъемлемой частью личности, ее невозможно потерять, передать, забыть. Поскольку биометрические характеристики каждого индивидуума уникальны, они могут использоваться для предотвращения воровства или мошенничества. Сегодня существует большое число компьютеризированных помещений, хранилищ, исследовательских лабораторий, банков крови, банкоматов, военных сооружений и т.д., доступ к которым контролируется устройствами, сканирующими уникальные физиологические характеристики человека.

В последние годы к вопросам безопасности информационных сетей, а в частности биометрических систем безопасности, было приковано самое пристальное внимание. Свидетельство тому - огромное количество статей, посвященных обзору ставших уже традиционными и известными широкому кругу читателей методов идентификации человека: по отпечаткам пальцев, по сетчатке и радужной оболочке глаза, по особенностям и структуре лица, по геометрии кисти руки, по речи и почерку.

Анализ научно-технической и периодической научно-популярной литературы позволяет систематизировать такие системы в плане трудоемкости их разработки и обеспечиваемой точности и надежности результатов измерений (рис. 1). Некоторые технологии уже сегодня получили широкое внедрение, другие еще только разрабатываются. В данной статье мы приведем примеры систем как первой, так и второй группы.

Пароли сегодняшнего дня

Идентификация по отпечаткам пальцев

На сегодняшний день одной из самых распространенных биометрических технологий является технология идентификации по отпечаткам пальцев. Системы, использующие такие технологии, берут свое начало от криминалистических систем, когда отпечаток пальца преступника заносился в картотеку, а затем сравнивался с предъявленным отпечатком. С тех пор появилось большое количество усовершенствованных устройств, сканирующих отпечатки пальцев. Исследования в данной области показали, что отпечаток пальца человека не изменяется со временем, а при повреждении кожного покрова идентичный папиллярный узор полностью восстанавливается. Очевидно, в силу указанных причин, а также вследствие того, что сканирование отпечатка пальца, в отличие от многих других способов идентификации, не вызывает дискомфорта у человека, данный способ стал самым распространенным способом идентификации. Еще одним плюсом использования данной методики является достаточно высокая точность распознавания. Компании, занимающиеся разработкой устройств сканирования отпечатков пальцев, постоянно совершенствуют свои алгоритмы и значительно преуспели в этом. Например, компания BioLink Technologies выпустила BioLink U-Match Mouse (рис. 2), cтандартную компьютерную мышь с колесом прокрутки со встроенным оптическим сканером отпечатков пальцев: интерфейс - USB или COM+PS/2; защита от муляжей и «неживых» пальцев; использование передовых оптических элементов обеспечивает высокое качество сканирования и точность распознавания. Биометрический сканер BioLink U-Match MatchBook выполнен в виде отдельного устройства (рис. 3), время сканирования - 0,13 с, время распознавания - 0,2 с, USB-интерфейс, реализована защита от муляжей. Эти устройства демонстрируют такой показатель точности распознавания, при котором вероятность того, что доступ к защищенной информации получит неавторизованный пользователь, равна 1 на 1 млрд. предъявлений отпечатка пальца.

На отечественном рынке популярность приобретают мыши со сканером от компании Siemens, клавиатуры со встроенным сканером от компании Cherry, а также ноутбуки со сканером отпечатков пальцев; представлены и устройства от других производителей. Поэтому если руководитель предприятия решится заменить устаревшую систему безопасности на более совершенные средства защиты информации, ему будет из чего выбирать.

Анализ мирового биометрического рынка показывает, что технологии распознавания по отпечаткам пальцев представляют 50% биометрического рынка, а вместе с криминалистическими системами - и все 80%. По итогам 2001 года компания International Biometric Group констатировала, что технологии идентификации по отпечаткам пальцев все так же занимают лидирующее положение среди всех биометрических технологий, представленных на рынке.

Для использования стандартной биометрической системы распознавания по отпечаткам пальцев пользователю необходимо сначала зарегистрироваться в системе. При этом нет основания опасаться, что отпечаток вашего пальца будет храниться в памяти устройства - большинство систем хранят в памяти не реальную картинку отпечатка, а лишь цифровой шаблон, по которому невозможно восстановить реальный образ, поэтому права пользователя никоим образом не нарушаются. Так, при использовании устройств компании BioLink Technologies изображение отпечатка моментально преобразуется в небольшой цифровой код (размером всего 512 байт).

Внедрение биометрической защиты отнюдь не всегда требует замены существующей системы безопасности. Часто можно произвести замену паролей на биометрический паспорт пользователя с минимальными затратами. Например, решения компании BioLink Technologies позволяют установить систему биометрической защиты поверх стандартной парольной системы безопасности. При этом происходит совершенно безболезненная замена паролей на отпечатки пальцев. Таким образом, можно надежно защитить вход в операционную систему (Windows NT/2000, Windows 95/98, Novell NetWare) и режимы принудительной блокировки, экранной заставки и спящего режима, а также заменить стандартные средства защиты прикладных программ защитой по отпечатку пальца. Все эти базовые функции, а также многие другие возможности реализуются программным обеспечением BioLink Authentication Center версии 4.2 - единственной на сегодняшний день полностью русифицированной системой такого класса. При этом модели отпечатков пальцев хранятся централизованно - на программно-аппаратном комплексе аутентификации Authenteon (рис. 4). Сервер обеспечивает безопасное хранение до 5 тыс. моделей отпечатков пальцев, по которым невозможно воспроизвести реальный образ отпечатка, и другой секретной информации. Кроме того, сервер Authenteon - это централизованное администрирование пользователей, а также возможность для администратора легко раздавать зарегистрированным пользователям различные привилегии доступа к разным ресурсам без повторной регистрации. Отказоустойчивость сервера реализована следующим образом: сервер представляет собой корпус, в который помещены два независимых физических сервера, что делает возможными замену в горячем режиме и репликацию базы данных на работающий сервер.

Поскольку в настоящее время все большую популярность приобретают Интернет-приложения (Интернет-банкинг, электронная коммерция, корпоративные порталы), разработчики BioLink позаботились о возможности внедрения биометрической идентификации по отпечаткам пальцев в Интернет-приложения. Таким образом, любая компания, предприятие или учреждение может надежно защитить секретную информацию.

Решения компании BioLink Technologies прежде всего рассчитаны на средние и крупные предприятия. При этом комплексное русифицированное решение (ПО + устройства ввода + аппаратный сервер) наилучшим образом может быть интегрировано с информационными и ERP-системами, используемыми на предприятии, что позволяет, с одной стороны, значительно сократить расходы на администрирование парольных систем, а с другой - надежно обезопасить конфиденциальную информацию от несанкционированного доступа как извне, так и внутри предприятия.

Кроме того, появляется возможность решить еще одну актуальную проблему - значительно уменьшить риски при передаче данных в финансовые, банковские и другие системы, осуществляющие важные транзакции с использованием сети Интернет.

Системы идентификации по радужной оболочке глаза

Как следует из рис. 1, наибольшую точность и надежность на современном этапе обеспечивают биометрические системы идентификации на основе анализа и сопоставления радужной оболочки глаза. Ведь глаз с одинаковой радужной оболочкой, даже у полностью идентичных близнецов, не существует. Формируясь в первый год жизни, этот параметр остается для человека уникальным в течение всего времени его существования. Этот метод идентификации отличается от первого большей сложностью в использовании, более высокой стоимостью аппаратуры и жесткими условиями регистрации.

В качестве примера современной системы идентификации на основе анализа радужной оболочки глаза уместно привести решение от компании LG.

Система IrisAccess позволяет менее чем за секунду отсканировать рисунок радужной оболочки глаза, обработать и сравнить с 4 тыс. других записей, которые она хранит в своей памяти, а затем послать соответствующий сигнал в охранную систему. Технология - полностью бесконтактная (рис. 5). На основе изображения радужной оболочки глаза строится компактный цифровой код размером 512 байт. Устройство имеет высокую надежность по сравнению с большинством известных систем биометрического контроля (рис. 6), поддерживает объемную базу данных, выдает звуковые инструкции на русском языке, позволяет интегрировать в систему карты доступа и PIN-клавиатуры. Один контроллер поддерживает четыре считывателя. Система может быть интегрирована в LAN.

IrisAccess 3000 состоит из оптического устройства внесения в реестр EOU3000, удаленного оптического устройства ROU3000, контрольного устройства опознавания ICU3000, платы захвата изображения, дверной интерфейсной платы и PC-сервера.

Если требуется осуществлять контроль за несколькими входами, то ряд удаленных устройств, включая ICU3000 и ROU3000, может быть подключен к PC-серверу через локальную сеть (LAN). Описания основных компонентов системы представлены на врезке.

Организация контроля доступа и принципиальная схема развертывания охранной системы на базе IrisAccess от компании LG представлены на рис. 7 , .

Системы распознавания речи

Самую нижнюю позицию на рис. 1 - как в плане трудоемкости, так и в плане точности - занимают системы идентификации на основе распознавания речи. Причинами внедрения этих систем являются повсеместное распространение телефонных сетей и практика встраивания микрофонов в компьютеры и периферийные устройства, например в камеры. В качестве недостатков таких систем можно назвать факторы, влияющие на результаты распознавания: помехи в микрофонах, влияние окружающей обстановки на результаты распознавания (шум), ошибки при произнесении, различное эмоциональное состояние проверяемого в момент регистрации эталона и при каждой идентификации, использование разных устройств регистрации при записи эталонов и идентификации, помехи в низкокачественных каналах передачи данных и т.п.

Пароли будущего

Мы привели примеры биометрических устройств, которые уже достаточно широко применяются для контроля доступа, однако научно-технический прогресс не стоит на месте, и поэтому спектр технологий, которые могут использоваться в системах безопасности, постоянно расширяется. В настоящее время ряд биометрических технологий находится в стадии разработки, причем некоторые из них считаются весьма перспективными. Поэтому поговорим о технологиях, которые пока не нашли массового внедрения, но через некоторое время вполне могут встать в один ряд с наиболее надежными технологиями, используемыми сегодня. К этому списку мы отнесли следующие технологии:

  1. построение термограммы лица на основе информации от датчика инфракрасного излучения;
  2. анализ характеристик ДНК;
  3. анализ динамики ударов по клавиатуре компьютера при печатании текста;
  4. анализ структуры кожи и эпителия на пальцах на основе цифровой ультразвуковой информации;
  5. анализ отпечатков ладоней;
  6. анализ формы ушной раковины;
  7. анализ характеристик походки человека;
  8. анализ индивидуальных запахов человека.

Рассмотрим суть этих методов подробнее. Технология построения и анализа термограммы (рис. 9) является одним из последних достижений в области биометрии. Как обнаружили ученые, использование инфракрасных камер дает уникальную картину объектов, находящихся под кожей лица. Разные плотности кости, жира и кровеносных сосудов строго индивидуальны и определяют термографическую картину лица пользователя. Согласно научным заключениям, термограмма лица является уникальной, вследствие чего можно уверенно различать даже абсолютно похожих близнецов. Из дополнительных свойств этого подхода можно отметить его инвариантность по отношению к любым косметическим или косметологическим изменениям, включая пластическую хирургию, изменения макияжа и т.п., а также скрытность процедуры регистрации.

Технология, построенная на анализе характеристик ДНК, или, как ее называют ученые, метод геномной идентификации (рис. 10) является, по всей видимости, хотя и самой долгосрочной, но и наиболее перспективной из систем идентификации. В настоящее время данный метод контроля является слишком медленным и сложным для автоматизации. Метод основан на том, что в ДНК человека имеются полиморфные локусы (локус - положение хромосомы (в гене или аллели), часто имеющие 8-10 аллелей. Определение набора этих аллелей для нескольких полиморфных локусов у конкретного индивида позволяет получить своего рода геномную карту, характерную только для этого человека. Точность данного метода определяется характером и количеством анализируемых полиморфных локусов и на сегодняшний день позволяет достичь уровня ошибки 1 на 1 млн. человек.

Динамика ударов по клавиатуре компьютера при печатании текста, или клавиатурный почерк, анализирует способ (ритм) печатания пользователем той или иной фразы. Существуют два типа систем распознавания клавиатурного почерка. Первые предназначены для аутентификации пользователя при попытке получения доступа к вычислительным ресурсам. Вторые осуществляют мониторинговый контроль уже после предоставления доступа и блокируют систему, если за компьютером начал работать не тот человек, которому доступ был предоставлен первоначально. Ритм работы на клавиатуре, как показали исследования ряда фирм и организаций, является достаточно индивидуальной характеристикой пользователя и вполне пригоден для его идентификации и аутентификации . Для его измерения оцениваются промежутки времени либо между ударами при печатании символов, расположенных в определенной последовательности, либо между моментом удара по клавише и моментом ее отпускания при печатании каждого символа в этой последовательности. Хотя второй способ считается более эффективным, наилучший результат достигается совместным использованием обоих способов. Отличительной особенностью этого метода является его дешевизна, так как для анализа информации не требуется никакого оборудования, кроме клавиатуры. Следует отметить, что на настоящий момент данная технология находится в стадии разработки, и поэтому сложно оценить степень ее надежности, особенно с учетом высоких требований, предъявляемых к системам безопасности.

Для идентификации человека по руке используют несколько биометрических параметров - это геометрическая форма кисти руки или пальцев, расположение подкожных кровеносных сосудов ладони, узор линий на ладони.

Технология анализа отпечатков ладоней стала развиваться сравнительно недавно, но уже имеет определенные достижения. Причиной развития этой технологии послужил тот факт, что устройства для распознавания отпечатков пальцев имеют недостаток - им нужны только чистые руки, а отпечаток грязного пальца система может и не распознать. Поэтому ряд компаний-разработчиков сосредоточились на технологии, анализирующей не рисунок линий на коже, а очертание ладони, которое также имеет индивидуальный характер. Так, в середине прошлого года в Великобритании началась разработка новой компьютерной системы, которая позволит устанавливать личность подозреваемых по отпечаткам ладоней. Аналогичная система, работающая с отпечатками пальцев, успешно используется британскими полицейскими уже три года. Но одних лишь отпечатков пальцев, как утверждают криминалисты, часто оказывается недостаточно. До 20% следов, оставляемых на месте преступления, - это отпечатки ладоней. Однако их анализ традиционными средствами достаточно трудоемок. Компьютеризация этого процесса позволит использовать отпечатки ладоней более широко и приведет к существенному увеличению раскрываемости преступлений. Ожидается, что система будет внедрена к началу 2004 года, а ее создание обойдется Министерству внутренних дел в 17 млн. фунтов стерлингов. Следует отметить, что устройства сканирования ладони, как правило, имеют высокую стоимость, и поэтому оснастить ими большое количество рабочих мест не так уж и просто.

Технология анализа формы ушной раковины является одной из самых последних подходов в биометрической идентификации человека. С помощью даже недорогой Web-камеры можно получать довольно надежные образцы для сравнения и идентификации. Нужно отметить, что, поскольку этот способ недостаточно изучен, нам не удалось найти в научно-технической литературе достоверной информации о текущем состоянии дел.

Способность собак различать людей по запаху и наличие генетического влияния на запах тела позволяют считать эту характеристику, несмотря на ее зависимость от обычаев и индивидуальных привычек (пользование парфюмерией, диета, употребление лекарств и пр.), перспективной в плане использования в целях биометрической аутентификации личности. В настоящее время уже ведутся разработки систем «электронного носа» (рис. 11). Как правило, «электронный нос» представляет собой комплексную систему, состоящую из трех функциональных узлов, работающих в режиме периодического восприятия пахучих веществ: системы пробоотбора и пробоподготовки, линейки или матрицы сенсоров с заданными свойствами и блока процессорной обработки сигналов матрицы сенсоров. Этой технологии, как и технологии анализа формы ушной раковины, еще предстоит пройти долгий путь развития, прежде чем она станет удовлетворять биометрическим требованиям.

В заключение хочется отметить, что пока еще рано предсказывать, где, как и в каком виде будут в конечном итоге представлены надежные биометрические службы. Но совершенно ясно, что невозможно обойтись без биометрической идентификации, если необходимо получить позитивные, надежные и неопровержимые результаты проверки. Поэтому не исключено, что в самом ближайшем будущем пароли и PIN-коды уступят место новым, более надежным средствам авторизации и аутентификации.

КомпьютерПресс 3"2002

К современным методам аутентификации относится проверка подлинности на основе биометрических показателей. При биометрической аутентификации, секретными данными пользователя могут служить, как глазная сетчатка, так и отпечаток пальца. Эти биометрические образы являются уникальными для каждого пользователя, что обеспечивает высокий уровень защиты доступа к информации. Согласно предварительно установленным протоколам, биометрические образцы пользователя регистрируются в базе данных.

Современная биометрическая аутентификация основывается на двух методах:

  • статический метод аутентификации - распознает физические параметры человека, которыми он обладает на протяжении всей жизни: от своего рождения и до самой смерти (отпечатки пальцев, отличительные характеристики радужной оболочки глаза, рисунок глазной сетчатки, термограмма, геометрия лица, геометрия кисти руки и даже фрагмент генетического кода);
  • динамический метод - анализирует характерный черты, особенности поведения пользователя, которые демонстрируются в момент выполнения какого либо обычного повседневного действия (подпись, клавиатурный почерк, голос и другое).

Основным на всемирном рынке биометрической защиты, всегда являлся статический метод. Динамическая аутентификация и комбинированные системы защиты информации занимали, всего лишь, 20 % рынка. Однако, в последние годы, наблюдается активное развитие динамических методов защиты. Особенный интерес сетевых технологий представляют методы клавиатурного почерка и аутентификации по подписи.

В связи с довольно быстрым развитием современных биометрических технологий, появляется критически важная проблема - определение общих стандартов надежности биометрических систем защиты. Большим авторитетом среди специалистов пользуются средства, имеющие сертификаты качества, которые выдает Международная ассоциация по компьютерной безопасности ICSA (International Computer Security Association).

Статический метод биометрической аутентификации и его разновидности

Дактилоскопия - наиболее популярная технология биометрической аутентификации, основанная на сканировании и распознавании отпечатков пальцев.


Данный метод активно поддерживается правоохранительными органами, с целью привлечения в свои архивы электронных образцов. Также, метод сканирования отпечатков пальцев легок в использовании и надежен универсальностью данных. Главным устройством этого метода биометрической аутентификации есть сканер, который сам по себе имеет небольшие размеры и является относительно недорогим в цене. Такая аутентификация осуществляется достаточно быстро за счет того, что система не требует распознавания каждой линии узора и сравнения её с исходными образцами, находящимися в базе. Системе достаточно определить совпадения в масштабных блоках и проанализировать раздвоения, разрывы и прочие искажения линий (минуции).

Уникальность каждого отпечатка позволяет использовать данный метод биометрической аутентификации как в криминалистике, в процессах серьезных бизнес-операций, так и в быту. В последнее время появилось множество ноутбуков со встроенным сканером отпечатков пальцев, клавиатур, компьютерных мышей, а также смартфонов для аутентификации пользователя.


Есть и минусы в этой, казалось бы, неоспоримой и не поддельной, аутентификации. Из-за использования сложных алгоритмов распознавания мельчайших папиллярных линий, система аутентификации может демонстрировать сбои при недостаточном контакте пальца со сканером. Обмануть средство аутентификации и саму систему защиты можно и с помощью муляжа (очень качественно выполненного) или мертвого пальца.

По принципу работы, используемые для аутентификации сканеры, делятся на три вида:

  • оптические сканеры, функционирующие на технологии отражения, или по принципу просвета. Из всех видов, оптическое сканирование не способно распознать муляж, однако, благодаря своей стоимости и простоте, именно оптические сканеры наиболее популярны;
  • полупроводниковые сканеры - подразделяются на радиочастотные, емкостные, термочувствительные и чувствительные к давлению сканеры. Тепловые (термосканеры) и радиочастнотные сканеры лучше всех способны распознать настоящий отпечаток и не допустить аутентификацию по муляжу пальца. Полупроводниковые сканеры считаются более надежными, нежели оптические;
  • ультразвуковые сканеры. Данный вид устройств является самым сложным и дорогим. С помощью ультразвуковых сканеров можно совершать аутентификацию не только по отпечаткам пальцев, но и по некоторым другим биометрическим параметрам, таким как частота пульса и пр.

Аутентификация по сетчатке глаза. Данный метод стали использовать еще в 50-х годах прошлого столетия. В то время, как раз, была изучена и определена уникальность рисунка кровеносных сосудов глазного дна.

Сканеры сетчатки глаза имеют довольно большие габариты и более высокую цену, нежели сканеры отпечатков пальцев. Однако, надежность такого вида аутентификации гораздо выше дактилоскопии, что и оправдывает вложения. Особенности рисунка кровеносных сосудов глазного дна таковы, что он не повторяется даже у близнецов. Поэтому, такая аутентификация имеет максимальную защиту. Обмануть сканер сетчатки глаза, практически невозможно. Сбои при распознавании глазного рисунка незначительно малы - примерно, один на миллион случаев. Если, у пользователя нет серьезных глазных заболеваний (например, катаракта), он может уверенно использовать систему аутентификации по сетчатке глаза для защиты доступа к всевозможным хранилищам, приватных кабинетов и сверхсекретных объектов.

Сканирование сетчатки глаза предусматривает использование инфракрасного низкоинтенсивного излучения, которое направляется к кровеносным сосудам глазного дна через зрачок. Сигнал отображает несколько сотен характерных точек, которые записываются в шаблон. Самые современные сканеры вместо инфракрасного света направляют лазер мягкого действия.

Для прохождения данной аутентификации, человек должен максимально приблизить к сканеру лицо (глаз должен быть не далее 1,5 см от устройства), зафиксировать его в одном положении и направить взгляд на дисплей сканера, на специальную метку. Около сканера, в таком положении, приходится находиться приблизительно минуту. Именно столько много времени требуется сканеру для осуществления операции сканирования, после чего, системе понадобится еще несколько секунд для сравнения полученного образца с установленным шаблоном. Длительное нахождение в одном положении и фиксация взгляда на вспышку света и являются самыми большими недостатками использования данного вида аутентификации. Плюс, из-за относительно долгого сканирования сетчатки и обработки результатов, данное устройство невозможно устанавливать для аутентификации большого количества людей (например, проходной).

Аутентификация по радужной оболочке глаза. Данный метод аутентификации основан на распознавании уникальных особенностей радужной оболочки глаза.


Схожий на сеть, сложный рисунок подвижной диафрагмы между задней и передней камерами глаза - это и есть уникальная радужная оболочка. Данный рисунок человеку дается еще до его рождения и особо не изменяется в течении всей жизни. Надежности аутентификации методом сканирования радужной оболочки глаза способствует различие левого и правого глаз человека. Такая технология, практически, исключает ошибки и сбои при аутентификации.

Однако, сложно назвать устройства, считывающие рисунок радужной оболочки - сканерами. Это, скорее всего, специализированная камера, которая делает 30 снимков в секунду. Затем оцифровывается одна из записей и преобразовывается в упрощенную форму, из которой отбираются около 200 характерных точек и информация по ним записывается в шаблон. Это куда более надежно, чем сканирование отпечатков пальцев - для формирования таких шаблонов используются всего лишь 60-70 характерных точек.

Данный вид аутентификации предполагает дополнительную защиту от поддельных глаз - в некоторых моделях устройств, для определения «жизни» глаза, изменяется поток света, направленный в него и система отслеживает реакцию и определяет изменяется ли размер зрачка.

Данные сканеры уже широко используются, к примеру, в аэропортах многих стран для аутентификации сотрудников во время пересечения зон ограниченного доступа, а также, неплохо зарекомендовали себя в Англии, Германии, США и Японии во время экспериментального использования с банкоматами. Следует отметить, что при аутентификации по радужной оболочке глаза, в отличие от сканирования сетчатки, считывающая камера может находиться от 10 см до 1 метра от глаза и процесс сканирования и распознавания проходит намного быстрее. Данные сканеры стоят дороже, нежели вышеуказанные средства биометрической аутентификации, но, в последнее время и они становятся все более доступными.

Аутентификация по геометрии руки - данный метод биометрической аутентификации предполагает измерение определенных параметров человеческой кисти, например: длина, толщина и изгибы пальцев, общая структура кисти, расстояние между суставами, ширина и толщина ладони.


Руки человека не являются уникальными, поэтому для надежности данного вида аутентификации необходимо комбинировать распознавание сразу по нескольким параметрам.

Вероятность ошибок при распознавании геометрии кисти составляет около 0,1%, а это значит, что при ушибе, артрите и прочих заболеваниях и повреждениях кисти, скорее всего, пройти аутентификацию не удастся. Так что, данный метод биометрической аутентификации не подходит для обеспечения безопасности объектов высокой степени секретности.

Однако, данный метод нашел широкое распространение, благодаря тому, что он удобен для пользователей по целому ряду причин. Одной из немаловажных таких причин является то, что устройство для распознания параметров руки не принуждает пользователя к дискомфорту и не отнимает много времени (весь процесс аутентификации осуществляется за несколько секунд). Следующей причиной популярности аутентификации по геометрии руки можно назвать тот факт, что ни температура, ни загрязненность, ни влажность кисти не влияют на процедуру аутентификации. Также, удобен данный метод и тем, что для распознавания кисти можно использовать изображение низкого качества - размер шаблона, хранящегося в базе всего 9 байт. Процедура сравнения кисти пользователя с установленным шаблоном очень проста и легко может быть автоматизирована.

Устройства данного вида биометрической аутентификации могут иметь разный внешний вид и функционал - одни сканируют лишь два пальца, другие делают снимок всей руки, а некоторые современные устройства при помощи инфракрасной камеры сканируют вены и по их изображению осуществляют аутентификацию.

Данный метод впервые был использован в начале 70-х годов прошлого века. Сегодня подобные устройства можно встретить в аэропортах и различных предприятиях, где необходимо формировать достоверные сведения о присутствии того, или иного человека, учета рабочего времени и прочих процедур контроля.

Аутентификация по геометрии лица. Этот биометрический метод аутентификации является одним из «трёх больших биометрик» наряду с распознаванием по радужной оболочке и сканированию отпечатков пальцев.


Данный метод аутентификации подразделяется на двухмерное и трехмерное распознавание. Двухмерное (2D) распознавание лица используется уже очень давно, в основном, в криминалистике. Но, с каждым годом данный метод усовершенствуется, повышая, этим самым, уровень своей надежности. Однако, до совершенства двухмерному методу распознавания лица еще далеко - вероятность ложных срабатываний при данной аутентификации варьируется от 0,1 до 1 %. Еще выше частота ошибок непризнания.

Куда больше надежд возлагают на новейший метод - трехмерное (3D) распознавание лиц. Оценки надежности данного метода пока не выведены, так как он является относительно молодым. Разработкой систем трехмерного распознавания лиц занимаются около десяти ведущих мировых ИТ-компаний, в том числе и из России. Большинство таких разработчиков предоставляют на рынок сканеры вместе с программным обеспечением. И только некоторые работают над созданием и выпуском сканеров.

При трехмерном распознавании лиц используется множество сложных алгоритмов, эффективность которых зависит от условий их применения. Процедура сканирования составляет около 20-30 секунд. В этот момент лицо может быть повернуто относительно камеры, что принуждает систему компенсировать движения и формировать проекции лица с четким выделением черт лица, таких как контуры бровей, глаз, носа, губ и др. Затем система определяет расстояние между ними. В основном, шаблон составляется из таких неизменных характеристик, как глубина глазных впадин, форма черепа, надбровных дуг, высота и ширина скул и прочих ярко выраженных особенностей, благодаря которым впоследствии система сможет распознать лицо даже при наличии бороды, очков, шрамов, головного убора и прочего. Всего для построения шаблона используется от 12 до 40 особенностей лица и головы пользователя.

Международный подкомитет по стандартизации в области биометрии (IS0/IEC JTC1/SC37 Biometrics) в последнее время занимается разработкой единого формата сведений для распознавания человеческих лиц на основе двух- и трехмерных изображений. Скорее всего, два данных метода объединят вы один биометрический метод аутентификации.

Термография лица. Данный биометрический метод аутентификации выражается в установлении человека по его кровеносным сосудам.


Лицо пользователя сканируется при помощи инфракрасного света и формируется термограмма - температурная карта лица, являющаяся достаточно уникальной. Данный метод по своей надежности сравним с методом аутентификации по отпечаткам пальцев. Сканирование лица при данной аутентификации можно производить с десятиметрового расстояния. Этот метод способен распознать близнецов (в отличии от распознавания по геометрии лица), людей, перенесших пластические операции, использующих маски, а также он эффективен не смотря на температуру тела и старение организма.

Однако, данный метод не распространен широко, возможно, из-за невысокого качества получаемых термограмм лиц.

Динамические методы биометрической аутентификации

Данный метод позволяет произвести идентификацию и аутентификацию личности при помощи лишь одного микрофона, который подключен к записывающему устройству. Использование данного метода бывает полезным в судебных случаях, когда единственной уликой против подозреваемого служит запись телефонного разговора. Метод распознавания голоса является очень удобным - пользователю достаточно лишь произнести слово, без совершения каких-либо дополнительных действий. И, наконец, огромным преимуществом данного метода является право осуществления скрытой аутентификации. Пользователь не всегда может быть осведомлен о включении дополнительной проверки, а значит, злоумышленникам будет еще сложнее получить доступ.

Формирование персонального шаблона производится по многим характеристикам голоса. Это может быть тональность голоса, интонация, модуляция, отличительные особенности произношения некоторых звуков речи и другое. Если система аутентификации должным образом проанализировала все голосовые характеристики, то вероятность аутентификации постороннего лица никчемно мала. Однако, в 1-3 % случаев, система может дать отказ и настоящему обладателю ранее определенного голоса. Дело в том, что голос человека может меняться во время болезни (например, простуды), в зависимости от психического состояния, возраста и т.п. Поэтому, биометрический метод голосовой аутентификации нежелательно использовать на объектах повышенной безопасности. Он может быть использован для доступа в компьютерные классы, бизнес-центры, лаборатории и подобного уровня безопасности объекты. Также, технология распознавание голоса может применяться не только в качестве аутентификации и идентификации, но и как незаменимый помощник при голосовом вводе данных.

Метод распознавания клавиатурного почерка - является одним из перспективных методов биометрической аутентификации сегодняшнего дня. Клавиатурный почерк представляет собой биометрическую характеристику поведения каждого пользователя, а именно - скорость ввода, время удержания клавиш, интервалы между нажатиями на них, частота образования ошибок при вводе, число перекрытий между клавишами, использование функциональных клавиш и комбинаций, уровень аритмичности при наборе и др.


Данная технология является универсальной, однако, лучше всего, распознавание клавиатурного почерка подходит для аутентификации удаленных пользователей. Разработкой алгоритмов распознавания клавиатурного почерка активно занимаются как зарубежные, так и российские ИТ-компании.

Аутентификация по клавиатурному почерку пользователя имеет два способа:

  • ввод известной фразы (пароля);
  • ввод неизвестной фразы (генерируется случайным образом).

Оба способа аутентификации предполагают два режима: режим обучения и режим самой аутентификации. Режим обучения заключается в многократном вводе пользователем кодового слова (фразы, пароля). В процессе повторного набора, система определяет характерные особенности ввода текста и формирует шаблон показателей пользователя. Надежность такого вида аутентификации зависит от длины вводимой пользователем фразы.

Среди преимуществ данного метода аутентификации следует отметить удобство пользования, возможность осуществления процедуры аутентификации без специального оборудования, а также возможность скрытой аутентификации. Минусом данного метода, как и в случае с распознаванием голоса, можно назвать зависимость отказа системы от возрастных факторов и состояния здоровья пользователя. Ведь, моторика, куда сильнее, нежели голос, зависит от состояния человека. Даже простая человеческая усталость может повлиять на прохождение аутентификации. Смена клавиатуры, также может быть причиной отказа системы - пользователь способен не сразу адаптироваться к новому устройству ввода и поэтому, при вводе проверочной фразы, клавиатурный почерк может не соответствовать шаблону. В частности, это влияет на темп ввода. Хотя, исследователи предлагают повысить эффективность данного метода за счет использования ритма. Искусственное добавление ритма (например, ввод пользователем слова под какую-то знакомую мелодию) обеспечивает устойчивость клавиатурного почерка и более надежную защиту от злоумышленников.

Верификация подписи . В связи с популярностью и массовому использованию различных устройств с сенсорным экраном, биометрический метод аутентификации по подписи становится очень востребованным.

Максимально точную верификацию подписи обеспечивает использование специальных световых перьев. Во многих странах электронные документы, подписанные биометрической подписью, имеют такую же юридическую силу, что и бумажные носители. Это позволяет осуществлять документооборот значительно быстрее и беспрепятственно. В России, к сожалению, доверие оказывает лишь бумажный подписанный документ, или электронный документ, на который наложена официально зарегистрированная электронная цифровая подпись (ЭЦП). Но, ЭЦП легко передать другому лицу, что не сделаешь с биометрической подписью. Поэтому, верификация по биометрической подписи является более надежной.

Биометрический метод аутентификации по подписи имеет два способа:

  • на основе анализа визуальных характеристик подписи. Данным способом предполагается сравнение двух изображений подписи на соответствие идентичности - это может осуществляться как системой, так и человеком;
  • способ компьютерного анализа динамических характеристик написания подписи. Аутентификация таким способом происходит после тщательного исследования сведений о самой подписи, а также о статистических и периодических характеристиках ее написания.

Формирование шаблона подписи осуществляется в зависимости от требуемого уровня защиты. Всего, одна подпись анализируется пол 100-200 характерным точкам. Если же, подпись ставится с использованием светового пера, то помимо координат пера, учитывается и угол его наклона, нажатие пера. Угол наклона пера исчисляется относительно планшета и по часовой стрелке.

Данный метод биометрической аутентификации, как и распознавание клавиатурного почерка, имеют общую проблему - зависимость от психофизического состояния человека.

Комбинированные решения биометрической аутентификации

Мультимодальная, или комбинированная система биометрической аутентификации - это устройство, в котором объединены сразу несколько биометрических технологий. Комбинированные решения по праву считаются наиболее надежными в плане защиты информации с помощью биометрических показателей пользователя, ведь подделать сразу несколько показателей гораздо сложнее, нежели один признак, что является, практически, не под силу злоумышленникам. Максимально надежными считаются комбинации «радужная оболочка + палец» или «палец + рука».

Хотя, в последнее время, популярность набирают системы типа «лицо + голос». Это связано с широким распространением коммуникационных средств, которые сочетают в себе модальности аудио и видео, например, мобильные телефоны со встроенными камерами, ноутбуки, видеодомофоны и прочее.

Комбинированные системы биометрической аутентификации значительно эжффективнее мономодальных решений. Это подтверждает множество исследований, в том числе опыт одного банка, который установил сперва систему аутентификации пользователей по лицу (частота ошибок за счет низкого качества камер 7 %), затем по голосу (частота ошибок 5% из-за фоновых шумов), а после, комбинировав эти два метода, достигли почти 100 % эффективности.

Биометрические системы могут быть объединены различными способами: параллельно, последовательно или согласно иерархии. Главным критерием при выборе способа объединения систем должна служить минимализация соотношения количества возможных ошибок ко времени одной аутентификации.

Помимо комбинированных систем аутентификации, можно использовать и многофакторные системы. В системах с многофакторной аутентификацией, биометрические данные пользователя используются вместе с паролем или электронным ключом.

Защита биометрических данных

Биометрическая система аутентификации, как и многие другие системы защиты, в любой момент может быть подвергнута нападению злоумышленников. Соответственно, начиная с 2011 года, международная стандартизация в области информационных технологий предусматривает мероприятия по защите биометрических данных - стандарт IS0/IEC 24745:2011. В российском законодательстве защиту биометрических данных регламентирует Федеральный закон «О персональных данных», с последними изменениями в 2011 году.

Наиболее распространенным направлением в области современных биометрических методов аутентификации является разработка стратегии защиты, хранящихся в базах данных биометрических шаблонов. Среди самых популярных киберпреступлений дня сегодняшнего во всем мире считается «кража личности». Утечка шаблонов из базы данных делает преступления более опасными, так как восстанавливать биометрические данные злоумышленнику проще за счет обратного инжиниринга шаблона. Поскольку биометрические характеристики неотъемлемы от своего носителя, похищенный шаблон нельзя заменить нескомпроментированным новым, в отличии от пароля. Опасность кражи шаблона еще заключается в том, что помимо доступа к защищенным данным, злоумышленник может заполучить секретную информацию о человеке, или организовать за ним тайную слежку.

Защита биометрических шаблонов базируется на трех основных требованиях:

  • необратимость - данное требование ориентировано на сохранение шаблона таким образом, чтобы злоумышленнику было невозможно восстановить вычислительным путем биометрические характеристики из образца, или создать физические подделки биометрических черт;
  • различимость - точность системы биометрической аутентификации не должна быть нарушена схемой защиты шаблона;
  • отменяемость - возможность формирования нескольких защищенных шаблонов из одних биометрических данных. Данное свойство предоставляет биометрической системе возможность отзывать биометрические шаблоны и выдавать новые при компрометации данных, а также предотвращает сопоставление сведений между базами данных, сохраняя этим самым приватность данных пользователя.

Оптимизируя надежную защиту шаблона, главной задачей является нахождение приемлемого взаимопонимания между этими требованиями. Защита биометрических шаблонов строится на двух принципах: биометрические криптосистемы и трансформация биометрических черт. Последние изменения в законодательстве запрещают оператору биометрической системы самостоятельно, без присутствия человека, менять его персональные данные. Соответственно, приемлемыми становятся системы, хранящие биометрические данные в зашифрованном виде. Шифровать эти сведения можно двумя методами: с помощью обычного ключа и шифрование при помощи ключа биометрического - доступ к данным предоставляется исключительно в присутствии владельца биометрических показателей. В обычной криптографии ключ расшифровки и зашифрованный шаблон представляют собой две абсолютно разные единицы. Шаблон может считаться защищенным в том случае, если защищен ключ. В биометрическом ключе происходит одновременная инкапсуляция шаблона криптографического ключа. В процессе шифрования подобным способом, в биометрической системе хранится лишь частичная информация из шаблона. Ее называют защищенным эскизом - secure sketch. На основании защищенного эскиза и другого биометрического образца, схожего на представленный при регистрации, восстанавливается оригинальный шаблон.

ИТ-специалисты, занимающиеся исследованиями схем защиты биометрических шаблонов, обозначили два главных метода создания защищенного эскиза:

  • нечеткое обязательство (fuzzy commitment);
  • нечеткий сейф (fuzzy vault).

Первый метод годится для защиты биометрических шаблонов, имеющих вид двоичных строк определенной длины. А второй может быть полезным для защиты шаблонов, которые представляют собой наборы точек.

Внедрение криптографических и биометрических технологий положительное влияет на разработку инновационных решений для обеспечения информационной безопасности. Особенно перспективной является многофакторная биометрическая криптография, объединившая в себе технологии пороговой криптографии с разделением секрета, многофакторной биометрии и методы преобразования нечетких биометрических признаков в основные последовательности.

Невозможно сформировать однозначный вывод, какой из современных биометрических методов аутентификации, или комбинированных методов является наиболее эффективным для тех, или иных коммерческих из расчета соотношения цены и надежности. Определенно видно, что для множества коммерческих задач использовать сложные комбинированные системы не представляется логичным. Но, вовсе не рассматривать такие системы, тоже не верно. Комбинированную систему аутентификации можно задействовать с учетом требуемого в данный момент уровня безопасности с возможностью активации дополнительных методов в дальнейшем.

Публикации по теме