Проверка гипотезы о равенстве среднего генеральной совокупности некоторому заданному значению. Проверка гипотезы равенства средних двух выборок (t - критерий)

Проверка статистических гипотез: гипотеза о равенстве средних для двух выборки

Работа носит вспомогательный характер, должна служить фрагментом других лабораторных работ.

Ни одно грамотное социологическое исследование не может обойтись без выдвижения гипотез. По большому счету можно вообще сказать, что главная его цель - это опровержение или подтверждение какого-либо предположения исследователя о социальной реальности на основе собранных им эмпирических данных. Мы выдвигаем гипотезу, собираем данные и делаем на основе статистического материала вывод. Но именно эта цепочка гипотеза-данные-вывод и содержит в себе массу вопросов, с которыми сталкивается практически любой начинающий исследователь. Основной из таких вопросов заключается в следующем: как перевести выдвинутую нами гипотезу на математический язык для того, чтобы ее потом можно было соотнести со статистическим массивом и, обработав с помощью методов математической статистики, опровергнуть или подтвердить? Здесь мы постараемся ответить на этот вопрос на примере проверки гипотез о равенстве средних.

Проверка статистических гипотез о равенстве средних

Под статистической гипотезой понимаются различного рода предположения относительно характера или параметров распределения случайной переменной, которые можно проверить, опираясь на результаты в случайной выборке.

Следует иметь в виду, что проверка статистической гипотезы имеет вероятностный характер. Также как мы никогда не можем на 100% быть уверены в том, что какой-либо выборочный параметр совпадает с параметром генеральной совокупности, мы никогда не можем абсолютно точно сказать, верна или ложна выдвинутая нами гипотеза.

Для того чтобы проверить статистическую гипотезу необходимо следующее:

1. Преобразовать содержательную гипотезу в статистическую: сформулировать нулевую и альтернативную статистические гипотезы.

2. Определить зависимые или независимые у нас выборки.

3. Определить объем выборок.

4. Выбрать критерий.

5. Выбрать уровень значимости, контролирующий допустимую вероятность ошибки первого рода, и определить область допустимых значений.

7. Отвергнуть или принять нулевую гипотезу.

Теперь рассмотрим каждый из шести пунктов более подробно.

Формулировка гипотезы

В статистических задачах часто бывает нужно сравнить средние двух разных выборок . Например, нас может интересовать разница средних зарплат мужчин и женщин, средних возрастов неких групп <А> и <В> и т.д. Или же, сформировав две независимые экспериментальные группы, мы можем сравнивать их средние с целью проверить, насколько различается, скажем, воздействие двух разных лекарств на кровяное давление или насколько размер группы влияет на отметки студентов. Иногда бывает так, что мы разбиваем совокупность на две группы попарно, то есть, имеем дело с близнецами, супружескими парами или одним и тем же человеком до и после какого-либо эксперимента и т.д. Чтобы стало более ясно, рассмотрим характерные примеры, где применяются различные критерии о равенстве средних.

Пример №1. Фирма разработала два разных препарата, понижающих давление (назовем их препараты Х и Y ) и хочет узнать различается или нет воздействие данных лекарств на больных, страдающих гипертонией. Из 50 человек с соответствующим заболеванием случайно выбираются 20 и случайно эти 20делятся на две группы по 10 человек. Первая группа в течение недели пользуется препаратом Х , вторая - препаратом Y . Затем у всех больных измеряется давление. Выдвигаемая содержательная гипотеза: препараты Х и Y по-разному влияют на кровяное давление больных .

Пример №2. Исследователь хочет узнать, как влияет продолжительность лекции на успеваемость студентов. Допустим, он избрал следующий путь: из 200 студентов случайно выбрал 50 человек и в течение месяца наблюдал за их успеваемостью. Далее он увеличил продолжительность лекций на 10 минут и в течение следующего месяца смотрел на успеваемость все тех же50 студентов. Потом он сравнил результаты каждого студента до и после увеличения продолжительности лекции. Выдвигаемая содержательная гипотеза: продолжительность лекции влияет на успеваемость студента .

Пример №3. Из 200 студентов случайно были выбраны 80 человек, и эти 80 человек разделили на две группы по 40. Одной группе задавали вопрос без установки: <Сколько вы готовы заплатить за натуральный йогурт?>, а второй группе задавали вопрос с установкой: <Сколько вы готовы заплатить за натуральный йогурт, если известно, что люди, потребляющие йогуртовые культуры, страдают на 10-15% меньше от заболеваний желудка?> Исследователь предполагал, что положительная информация о продукте, содержащаяся во втором вопросе, повлияет на респондента, и люди, отвечающие на вопрос с установкой, будут готовы заплатить за йогурт больше, нежели те, которым был предложен вопрос без установки. Выдвигаемая содержательная гипотеза: постановка вопроса влияет на ответ респондента .

Перед нами три примера, каждый из которых демонстрирует формулировку содержательной гипотезы. Теперь преобразуем наши содержательные гипотезы в статистические, но для начала немного скажем о статистических гипотезах в целом.

Наиболее частый подход к формулировке статистических гипотез - это выдвижение двух двусторонних гипотез :

Как видно из формулы, нулевая гипотеза говорит о том, что какой-либо параметр выборки или, скажем, разница между параметрами двух выборок равна некоему числу а . Альтернативная гипотеза утверждает обратное: интересующий нас параметр не равен а . Таким образом, данные две гипотезы содержат в себе все возможные варианты исходов.

Также возможна формулировка односторонних гипотез :

Иногда такие гипотезы оказываются более осмысленными. Обычно они имеют место в том случае, когда вероятность того, что наш параметр может оказаться больше (или меньше) а равна нулю, то есть такое невозможно.

Теперь сформулируем нулевую и альтернативную статистические гипотезы для наших трех примеров.

Таблица №1.

Пример №1

Пример №2

Пример №3

Препараты Х и Y по-разному влияют на кровяное давление больных

Продолжительность лекции влияет на успеваемость студентов

Постановка вопроса влияет на ответ респондента

Задача исследователя

4.Найти среднее арифметическое разностей для всех студентов, обозначаемое

Нулевая гипотеза

Смысл нулевой гипотезы

исредние генеральных совокупностей, из которых взяты выборки со среднимии. Нулевая гипотеза говорит о том, что влияние обоих лекарств на давление в среднем незначительно, и если даже выборочные средние не равны, то это объясняется лишь погрешностью выборки или иными не зависящими от нас причинами

Среднее разностей для студентов в генеральной совокупности. Нулевая гипотеза говорит о том, что на самом деле нет разницы между средним баллом студента до и после увеличения продолжительности лекции, и если даже выборочное среднее разностей отлично от нуля, то это объясняется лишь погрешностью выборки или иными не зависящими от нас причинами

Посколькусовпадает св примере №1, то объяснения можно найти в первой колонке (см. пример 1)

Альтернативная гипотеза

Вывод относительно содержательной гипотезы

Если мы принимаем нулевую гипотезу - препараты оказывают одинаковое влияние (разницы между средними нет), то мы отвергаем содержательную гипотезу, в противном случае - мы принимаем содержательную гипотезу

Если мы принимаем нулевую гипотезу - продолжительность лекции не влияет на успеваемость, то мы отвергаем содержательную гипотезу и наоборот

Если мы принимаем нулевую гипотезу - вопрос не влияет на выбор респондента, то мы отвергаем содержательную гипотезу и наоборот.

Проверка однородности двух выборок производится с помощью критерия Стьюдента (или t – критерия). Рассмотрим постановку задачи проверки однородности двух выборок. Пусть произведено две выборки объемом и . Необходимо проверить нулевую гипотезу о том, что генеральные средние двух выборок равны. То есть, и . n 1

Прежде чем рассматривать методику решения задачи рассмотрим некоторые теоретические положения, используемые для решения задачи. Известный математик У.С. Госсет (ряд своих работ публиковал под псевдонимом Стьюдент) доказал, что статистика t (6.4) подчиняется определенному закону распределения, который в последствии был назван законом распределения Стьюдента (второе название закона – ”t – распределение”).

Среднее значение случайной величины X ;

Математическое ожидание случайной величины X ;

Среднеквадратичного отклонения среднего выборки объема n .

Оценка среднеквадратичного отклонения среднего рассчитывается по формуле (6.5):

Среднеквадратичного отклонения случайной величины X .

Распределение Стьюдента имеет один параметр – количество степеней свободы .

Теперь вернемся к исходной постановке задачи с двумя выборками и рассмотрим случайную величину равную разности средних двух выборок (6.6):

(6.6)

При условии выполнения гипотезы о равенстве генеральных средних справедливо (6.7):

(6.7)

Перепишем соотношение (6.4) применительно нашему случаю:

Оценка среднеквадратичного отклонения может быть выражена через оценку среднеквадратичного отклонения объединенной совокупности (6.9):

(6.9)

Оценка дисперсии объединенной совокупности может быть выражена через оценки дисперсии, рассчитанные по двум выборкам и :

(6.10)

С учетом формулы (6.10) соотношение (6.9) можно переписать в виде (6.11). Соотношение (6.9) является основной расчетной формулой задачи сравнения средних:

При подстановке значения в формулу (6.8) будем иметь выборочное значение t -критерия . По таблицам распределения Стьюдента при количестве степеней свободы и заданном уровне значимости можно определить . Теперь, если , то гипотеза о равенстве двух средних отвергается.

Рассмотрим пример выполнения расчетов для проверки гипотезы равенства двух средних в EXCEL. Сформируем таблицу данных (рис. 6.22). Данные сгенерируем с помощью программы генерации случайных чисел пакета ”Анализ данных”:

X1 выборка из нормального распределения с параметрами объемом ;

X2 выборка из нормального распределения с параметрами объемом ;

X3 выборка из нормального распределения с параметрами объемом ;

X4 выборка из нормального распределения с параметрами объемом .


Проверим гипотезу равенства двух средних (X1-X2), (X1-X3), (X1-X4). В начале рассчитаем параметры выборок признаков X1-X4 (рис. 6.23). Затем рассчитаем значение t - критерия. Расчеты выполнит с помощью формул (6.6) – (6.9) в EXCEL. Результаты расчетов сведем в таблицу (рис. 6.24).

Рис. 6.22. Таблица данных

Рис. 6.23. Параметры выборок признаков X1-X4

Рис. 6.24. Сводная таблица расчета значений t – критерия для пар признаков (X1-X2), (X1-X3), (X1-X4)

По результатам, приведенным в таблице на рис. 6.24 можно сделать заключение, что для пары признаков (X1-X2) гипотеза равенства средних двух признаков отвергается, а для пар признаков (X1-X3), (X1-X4) гипотезу можно считать справедливой.

Такие же результаты можно получить с помощью программы “Двухвыборочный t -тест с одинаковыми дисперсиями” пакета Анализ данных. Интерфейс программы приведен на рис. 6.25.

Рис. 6.25. Параметры программы “Двухвыборочный t - тест с одинаковыми дисперсиями”

Результаты расчетов проверки гипотез равенства двух средних пар признаков (X1-X2), (X1-X3), (X1-X4), полученные с помощью программы приведены на рис. 6.26-6.28.

Рис. 6.26. Расчет значения t – критерия для пары признаков (X1-X2)

Рис. 6.27. Расчет значения t – критерия для пары признаков (X1-X3)

Рис. 6.28. Расчет значения t – критерия для пары признаков (X1-X4)

Двухвыборочный t -тест с одинаковыми дисперсиями иначе называется t -тестом с независимыми выборками. Большое распространение так же получил t -тестом с зависимыми выборками. Ситуация, когда необходимо применять этот критерий возникает тогда, когда одна и та же случайная величина подвергается измерению дважды. Количество наблюдений в обоих случаях одинаково. Введем обозначения для двух последовательных измерений некоторого свойства одних и тех же объектови , , а разность двух последовательных измерений обозначим :

В этом случае формула для выборочного значения критерия приобретает вид:

, (6.13)

(6.15)

В этом случае количество степеней свободы . Проверку гипотезы можно выполнить с помощью программы “Парный двухвыборочный t -тест” пакета анализа данных (рис. 6.29).

Рис. 6.29. Параметры программы “Парный двухвыборочный t -тест”

6.5. Дисперсионный анализ –классификация по одному признаку (F - критерий)

В дисперсионном анализе проверяется гипотеза, которая является обобщением гипотезы равенства двух средних на случай, когда проверяется гипотеза равенства одновременно нескольких средних. В дисперсионном анализе исследуется степень влияния одного или нескольких факторных признаков на результативный признак. Идея дисперсионного анализа принадлежит Р. Фишеру. Он использовал его для обработки результатов агрономических опытов. Дисперсионный анализ применяется для установления существенности влияния качественных факторов на исследуемую величину. Английское сокращенное название дисперсионного анализа – ANOVA (analysis variation).

Общая форма представления данных с классификацией по одному признаку представлена в таблице 6.1.

Таблица 6.1. Форма представления данных с классификацией по одному признаку

Рассмотрим использование MS EXCEL при проверке статистических гипотез о среднем значении распределения в случае неизвестной дисперсии. Вычислим тестовую статистику t 0 , рассмотрим процедуру «одновыборочный t -тест», вычислим Р-значение (Р- value ).

Материал данной статьи является продолжением статьи . В указанной статье даны основные понятия проверки гипотез (нулевая и альтернативная гипотезы, тестовые статистики, эталонное распределение, Р-значение и др. ).

СОВЕТ : Для проверки гипотез потребуется знание следующих понятий:

  • , и их .

Формулировка задачи. Из генеральной совокупности имеющей с неизвестным μ (мю) и неизвестной дисперсией взята выборка размера n. Необходимо проверить статистическую гипотезу о равенстве неизвестного μ заданному значению μ 0 (англ. Inference on the mean of a population, variance unknown).

Примечание : Требование о нормальности исходного распределения, из которого берется выборка , не является обязательным. Но, необходимо, чтобы были выполнены условия применения .

Сначала проведем проверку гипотезы , используя доверительный интервал , а затем с помощью процедуры t -тест. В конце вычислим Р-значение и также используем его для проверки гипотезы .

Пусть нулевая гипотеза Н 0 утверждает, что неизвестное среднее значение распределения μ равно μ 0 . Соответствующая альтернативная гипотеза Н 1 утверждает обратное: μ не равно μ 0 . Это пример двусторонней проверки , т.к. неизвестное значение может быть как больше, так и меньше μ 0 .

Если упрощенно, то проверка гипотезы заключается в сравнении 2-х величин: вычисленного на основании выборки среднего значения Х ср и заданного μ 0 . Если эти значения «отличаются больше, чем можно было бы ожидать исходя из случайности», то нулевую гипотезу отклоняют.

Поясним фразу «отличаются больше, чем можно было бы ожидать исходя из случайности». Для этого, вспомним, что распределение Выборочного среднего (статистика Х ср ) стремится к нормальному распределению со средним значением μ и стандартным отклонением равным σ/√n, где σ – стандартное отклонение распределения, из которого берется выборка (не обязательно нормальное ), а n – объем выборки (подробнее см. ).

К сожалению, в нашем случае дисперсия а, значит, и стандартное отклонение , неизвестны, поэтому вместо нее мы будем использовать ее оценку - s 2 и, соответственно, стандартное отклонение выборки s.

Известно, что если вместо неизвестной дисперсии распределения σ 2 мы используем дисперсию выборки s 2 , то распределением статистики Х ср является с n-1 степенью свободы .

Таким образом, знание распределения статистики Х ср и заданного , позволяют нам формализовать с помощью математических выражений фразу «отличаются больше, чем можно было бы ожидать исходя из случайности».

В этом нам поможет доверительный интервал (как строится доверительный интервал нам известно из статьи ). Если среднее выборки попадает в доверительный интервал, построенный относительно μ 0 , то для отклонения нулевой гипотезы оснований нет. Если не попадает, то нулевая гипотеза отвергается.

Воспользуемся выражением для Доверительного интервала , которое мы получили в статье .

Напомним, что доверительный интервал обычно определяют через количество стандартных отклонений , которые в нем укладываются. В нашем случае в качестве стандартного отклонения берется стандартная ошибка s/√n.

Количество стандартных отклонений зависит от количества степеней свободы используемого t-распределения и уровня значимости α (альфа) .

Для визуализации проверки гипотезы методом доверительного интервала в создана .

Примечание : Перечень статей о проверке гипотез приведен в статье .

t-тест

Ниже приведем процедуру проверки гипотезы в случае неизвестной дисперсии . Данная процедура имеет название t -тест :

В MS EXCEL верхний α /2-квантиль вычисляется по формуле
=СТЬЮДЕНТ.ОБР(1-α /2; n-1)

Учитывая симметричность t-распределения относительно оси ординат, верхний α /2-квантиль равен обычному α /2-квантилю со знаком минус:
=-СТЬЮДЕНТ.ОБР(α /2; n-1)

Также в MS EXCEL имеется специальная формула для вычисления двухсторонних квантилей :
=СТЬЮДЕНТ.ОБР.2Х(α ; n-1)
Все три формулы вернут один и тот же результат.

Примечание : Подробнее про квантили распределения можно прочитать в статье .

Примечание : Если вместо t-распределения использовать стандартное нормальное распределение, то мы получим необоснованно более узкий доверительный интервал , тем самым мы будем чаще необоснованно отвергать нулевую гипотезу , когда она справедлива (увеличим ошибку первого рода ).

Отметим, что различие в ширине интервалов зависит от размера выборки n (при уменьшении n различие увеличивается) и от уровня значимости (при уменьшении α различие увеличивается). Для n=10 и α = 0,01 относительная разница в ширине интервалов составляет порядка 20%. При большом размере выборки n (>30), различием в интервалах часто пренебрегают (для n=30 и α = 0,01 относительная разница составляет 6,55%). Это свойство используется в функции Z.ТЕСТ() , которая вычисляет р-значение (см. ниже) с использованием нормального распределения (аргумент σ должен быть опущен или указана ссылка на стандартное отклонение выборки ).

В случае односторонней гипотезы речь идет об отклонении μ только в одну сторону: либо больше либо меньше μ 0 . Если альтернативная гипотеза звучит как μ>μ 0 , то гипотеза Н 0 отвергается в случае t 0 > t α ,n-1 . Если альтернативная гипотеза звучит как μ<μ 0 , то гипотеза Н 0 отвергается в случае t 0 < - t α ,n-1 .

Вычисление Р-значения

При проверке гипотез большое распространение также получил еще один эквивалентный подход, основанный на вычислении p -значения (p-value).

СОВЕТ : Подробнее про p -значение написано в статье .

Если p-значение , вычисленное на основании выборки , меньше чем заданный уровень значимости α , то нулевая гипотеза отвергается и принимается альтернативная гипотеза . И наоборот, если p-значение больше α , то нулевая гипотеза не отвергается.

Другими словами, если p-значение меньше уровня значимости α , то это свидетельство того, что значение t -статистики , вычисленное на основе выборки при условии истинности нулевой гипотезы , приняло маловероятное значение t 0 .

Формула для вычисления p-значения зависит от формулировки альтернативной гипотезы :

  • Для односторонней гипотезы μ<μ 0 p-значение вычисляется как =СТЬЮДЕНТ.РАСП(t 0 ; n-1; ИСТИНА)
  • Для другой односторонней гипотезы μ>μ 0 p-значение вычисляется как =1-СТЬЮДЕНТ.РАСП(t 0 ; n-1; ИСТИНА)
  • Для двусторонней гипотезы p-значение вычисляется как =2*(1-СТЬЮДЕНТ.РАСП(ABS(t 0);n-1;ИСТИНА))

Соответственно, t 0 =(СРЗНАЧ(выборка )-μ 0)/ (СТАНДОТКЛОН.В(выборка )/ КОРЕНЬ(СЧЁТ(выборка ))) , где выборка – ссылка на диапазон, содержащий значения выборки .

В файле примера на листе Сигма неизвестна показана эквивалентность проверки гипотезы через доверительный интервал , статистику t 0 (t -тест) и p -значение .

Примечание : В MS EXCEL нет специализированной функции для одновыборочного t-теста . При больших n можно использовать функцию Z.ТЕСТ() с опущенным 3-м аргументом (подробнее про эту функцию см. статью ). Функция СТЬЮДЕНТ.ТЕСТ() предназначена для .

Сравнение средних двух совокупностей имеет важное практическое значение. На практике часто встречаются случай, когда средний результат одной серии экспериментов отличается от среднего результата другой серии. При этом возникает вопрос, можно ли объяснять обнаруженное расхождение средних неизбежными случайными ошибками эксперимента или оно вызвано некоторыми закономерностями. В промышленности задача сравнения средних часто возникает при выборочном контроле качества изделий, изготовленных на разных установках или при различных технологических режимах, в финансовом анализе - при сопоставлении уровня доходности различных активов и т.д.

Сформулируем задачу. Пусть имеются две совокупности, характеризуемые генеральными средними и и известными дисперсиями и. Необходимо проверить гипотезу о равенстве генеральных средних, т.е. : =. Для проверки гипотезы из этих совокупностей взяты две независимые выборки объемов и, по которым найдены средние арифметические и и выборочные дисперсии и.При достаточном больших объемов выборки, выборочные средние и имеют приближенно нормальный закон распределения, соответственно и.В случае справедливости гипотезы разность - имеет нормальный закон распределения с математическим ожиданием и дисперсией.

Поэтому при выполнении гипотезы статистика

имеет стандартное нормальное распределение N (0; 1).

Проверка гипотез о числовых значениях параметров

Гипотезы о числовых значениях встречаются в различных задачах. Пусть - значения некоторого параметра изделий, производящихся станком автоматической линии, и пусть - заданное номинальное значение этого параметра. Каждое отдельное значение может, естественно, как-то отклоняться от заданного номинала. Очевидно, для того, чтобы проверить правильность настройки этого станка, надо убедиться в том, что среднее значение параметра у производимых на нем изделий будет соответствовать номиналу, т.е. проверить гипотезу против альтернативной, или, или

При произвольной настройке станка может возникнуть необходимость проверки гипотезы о том, что точность изготовления изделий по данному параметру, задаваемая дисперсий, равна заданной величине, т.е. или, например, того, что доля бракованных изделий, производимых станком, равна заданной величине р 0 , т.е. и т.д.

Аналогичные задачи могу возникнуть, например, в финансовом анализе, когда по данным выборки надо установить, можно ли считать доходность актива определенного вида или портфеля ценных бумаг, либо ее риск равным заданному числу; или по результатам выборочной аудиторской проверки однотипных документов нужно убедиться, можно ли считать процент допущенных ошибок равным номиналу, и т.п.

В общем случае гипотезы подобного типа имеют вид, где - некоторый параметр исследуемого распределения, а - область его конкретных значений, состоящая в частном случае из одного значения.

Рассмотрим две независимые выборки x 1, x 2 , ….. , x n и y 1 , y 2 , … , y n , извлеченные из нормальных генеральных совокупностей с одинаковыми дисперсиями , причем объемы выборок соответственно n и m, а средние μ x , μ y и дисперсия σ 2 неизвестны. Требуется проверить основную гипотезу Н 0: μ x =μ y при конкурирующей Н 1: μ x μ y .

Как известно, выборочные средние и будут обладать свойствами: ~N(μ x , σ 2 /n), ~N(μ y , σ 2 /m).

Их разность - нормальная величина со средним и дисперсией , так что

~ (23).

Допустим на время, что основная гипотеза Н 0 верна: μ x –μ y =0. Тогда и, деля величину на ее стандартное отклонение, получим стандартную нормальную сл. Величину ~N(0,1).

Раньше отмечалось, что сл. величина распределена по закону с (n-1)-ой степенью свободы, a - по закону с (m-1) степенью свободы. С учетом независимости этих двух сумм, получаем, что их общая сумма распределена по закону с n+m-2 степенями свободы.

Вспоминая п.7, видим, что дробь подчиняется t-распределенню (Стьюдента) с ν=m+n-2 степенями свободы: Z=t. Этот факт имеет место только тогда, когда истинна гипотеза Н 0 .

Заменяя ξ и Q их выражениями, получим развернутую форнулу для Z:

(24)

Сл.величина Z, называемая статистикой критерия, позволяет принять решение при такой последовательности действий:

1. Устанавливается область D=[-t β,ν , +t β,ν ], содержащая β=1–α площади под кривой t ν –распределения (табл.10).

2. Вычисляется по формуле (24) опытное значение Z on статистики Z, для чего вместо X 1 и Y 1 подставляются значения x 1 и y 1 конкретных выборок, а также их выборочные средние и .

3. Если Z on D, то гипотеза Н 0 считается не противоречащей опытным данным и принимается.

Если Z on D, то принимается гипотеза Н 1 .

Если гипотеза Н 0 верна, то Z подчиняется известному t ν –распределению с нулевым средним и с высокой вероятностью β=1–α попадает в D-область принятия гипотезы Н 0 . Когда наблюдаемое, опытное значение Z on попадает в D. Мы рассматриваем это как свидетельство в пользу гипотезы Н 0 .

Когда жe Z 0 n лежит за пределами D (как говорят, лежит в критической области К), что естественно, если верна гипотеза Н 1 , но маловероятно, если верна Н 0 , то нам остается отклонить гипотезу Н 0 , приняв H 1 .

Пример 31.

Сравниваются две марки бензина: А и В. На 11 автомашинах одинаковой мощности по кольцевому шассе испытан по разу Бензин марки А и В. Одна машина в пути вышла из строя н для нее данные по бензину В отсутствуют.

Расход бензина в пересчете на 100 км пути

Таблица 12

i
X i 10,51 11,86 10,5 9,1 9,21 10,74 10,75 10,3 11,3 11,8 10,9 n=11
У i 13,22 13,0 11,5 10,4 11,8 11,6 10,64 12,3 11,1 11,6 - m=10

Дисперсия расхода бензина марок А и В неизвестна и предполагается одинаковой. Можно ли при уровне значимости α=0,05 принять гипотезу о том, что истинные средние расходы μ А и μ В этих видов бензина одинаковы?

Решение. Проверку гипотезы Н 0: μ А -μ В =0 при конкурирующей. Н 1:μ 1 μ 2 делаем по пунктам:

1. Находим выборочные средние и сумму квадратов откло­нений Q.

;

;

2. Вычисляем опытное значение статистики Z

3. Находим из таблицы 10 t-распределения предел t β,ν , для числа степеней свободы ν=m+n–2=19 и β=1–α=0.95. В таблице 10 есть t 0.95.20 =2,09 и t 0.95.15 =2,13, но нет t 0.95.19 . Находим интерполяцией t 0.95.19 =2,09+ =2,10.

4. Проверяем, в какой из двух областей D или К лежит число Z on . Zon=-2,7 D=[-2,10; -2,10].

Поскольку наблюденное значение Z on лежит в критической области, К=R\D, то отбрасываем. Н 0 и приникаем гипотезу Н 1 . В этом случае про и говорят, что их разность значима. Если бы при всех условиях этого примера изменилось бы лишь Q, скажем, Q вдвое возросло, то изменился бы и наш вывод. Увеличение Q вдвое привело бы к уменьшению в раза величины Z on и тогда число Zon попало бы в допустимую область D, так что гипотеза H 0 выдержала бы проверку и была принята. В этом случае расхождение между и объяснялось бы естественным разбросом данных, а не тем, что μ А μ В.

Теория проверки гипотез весьма обширна, гипотезы могут быть о виде закона распределения, об однородности выборок, о независимости сл.величины и т.д.

КРИТЕРИЙ c 2 (ПИРСОНА)

Самый распространенный на практике критерий проверки простой гипотезы. Применяется, когда закон распределения неизвестен. Рассмотрим случайную величину X, над которой проведено n независимых испытаний. Получена реализация x 1 , x 2 ,...,x n . Необходимо проверить гипотезу о законе распределения этой случайной величины.

Рассмотрим случай простой гипотезы. Простая гипотеза проверяет согласование выборки с генеральной совокупностью, имеющей нормальное распределение (известное). По выборкам строим вариационный ряд x (1) , x (2) , ..., x (n) . Интервал разбиваем на подинтервалы. Пусть этих интервалов r. Тогда найдем вероятность попадания X в результате испытания в интервал Di, i=1 ,..., r в случае истинности проверяемой гипотезы.

Критерий проверяет не истинность плотности вероятности, а истинность чисел

С каждым интервалом Di свяжем случайное событие A i - попадание в этот интервал (попадание в результате испытания над X ее результата реализации в Di). Введем случайные величины. m i - количество испытаний из n проведенных, в которых произошло событие A i . m i распределены по биномиальному закону и в случае истинности гипотезы

Dm i =np i (1-p i)

Критерий c 2 имеет вид

p 1 +p 2 +...+p r =1

m 1 +m 2 +...+m r =n

Если проверяемая гипотеза верна, то m i представляет частоту появления события, имеющего в каждом из n проведенных испытаний вероятность p i , следовательно, мы можем рассматривать m i как случайную величину, подчиняющуюся биномиальному закону с центром в точке np i . Когда n велико, то можно считать, что частота распределена асимптотически нормально с теми же параметрами. При правильности гипотезы следует ожидать, что будут асимптотически нормально распределены

связанные между собой соотношением

В качестве меры расхождения данных выборки m 1 +m 2 +...+m r с теоретическими np 1 +np 2 +...+np r рассмотрим величину

c 2 - сумма квадратов асимптотически нормальных величин, связанных линейной зависимостью. Мы ранее встречались уже с аналогичным случаем и знаем, что наличие линейной связи привело к уменьшению на единицу числа степеней свободы.

Если проверяемая гипотеза верна, то критерий c 2 имеет распределение, стремящееся при n®¥ к распределению c 2 с r-1 степенями свободы.

Допустим, что гипотеза неверна. Тогда существует тенденция к увеличению слагаемых в сумме, т.е. если гипотеза неверна, то эта сумма будет попадать в некую область больших значений c 2 . В качестве критической области возьмем область положительных значений критерия


В случае неизвестных параметров распределения каждый параметр уменьшает на единицу количество степеней свободы для критерия Пирсона

Публикации по теме