Процессоры phenom серии b. Процессор AMD Phenom II: характеристики, описание, отзывы

Закрывая круг «исторических тестирований», сегодня мы займемся платформой, которая формально остается в числе живых и здравствующих, хотя идеологически даже старше ранее рассмотренных AMD FM1 и Intel LGA1156 . Как ей это удается? Этим вопросом мы уже занимались : Socket AM3+ 2011 года практически ничем не отличается от «просто» АМ3 2009, получившейся путем перехода с DDR2 на DDR3 из AM2/AM2+ от 2006 года, а эти, в свою очередь, являются практически ни чем иным, как Socket 939 лета 2004 года, но с DDR2, а не с «простой» DDR. Правильнее, впрочем, говорить даже о 2003 годе, когда появился Socket 940: Socket 939 - это его упрощение, без поддержки многопроцессорных конфигураций. За это время успели поменяться не только стандарты памяти, конечно, но и некоторые другие интерфейсы, однако концептуально в виде АМ3+ мы имеем классическую платформу нулевых годов - трехчиповую и относительно низкой степени интеграции. Стоит также заметить, что последние микроархитектурные обновления выпускаемых для нее процессоров относятся к концу 2012 года , т. е. и с этой точки зрения даже последняя модификация АМ3+ - это уже история (в той же степени, что и LGA1155, например). Однако в рамках других платформ компания AMD отгружает не более чем двухмодульные процессоры (поддерживающие, соответственно, лишь четыре потока вычислений) с существенным креном в сторону интегрированной графики, так что самыми производительными процессорами AMD до сих пор являются именно устройства для АМ3+. Они давно не обновлялись, но окончательное их устаревание запланировано только на вторую половину этого года - в связи с переходом на единый (наконец-то!) сокет АМ4, для которого будут выпускаться и высокопроизводительные процессоры без интегрированной графики, и относительно бюджетные с таковой. Несложно заметить, что это пока еще не аналог LGA1155 и последующих платформ Intel - скорее, повторение LGA1156, поскольку при выборе быстрого процессора «в нагрузку» придется использовать и дискретную видеокарту. Но это все же намного лучше того, что происходило с ассортиментом компании последние пять лет, когда разнообразные FMx и все та же давно устаревшая АМ3+ были попросту несовместимы друг с другом.

Как компании удавалось поддерживать АМ3+ «на плаву», не обновляя процессоры? Да очень просто: за счет цены. О конкуренции за любителей высокой производительности все равно пришлось давно забыть, зато за примерно одни и те же деньги покупатель может приобрести либо восьмипоточный FX-8350/8370, либо четырехпоточный Core i5-6400. Да, разумеется, сравнение цен в данном случае не совсем корректно, поскольку не учитывает прочие особенности платформ и, в первую очередь, возможность сэкономить на видеокарте в случае платформы Intel. Однако если видеоускоритель все равно нужно приобретать (например, когда интересуют игры - мы придерживались и продолжаем придерживаться мнения, что полноценный игровой компьютер без дискретной видеокарты все еще невозможен), эта проблема отпадает. И на первый взгляд становится неважно, что тот же FX-8350 появился еще в 2012 году: реклама в его случае вообще говорит о восьми ядрах (забывая уточнить, что это несколько не те ядра, что в других архитектурах процессоров даже самой AMD), т. е. создает впечатление процессора, который в исполнении Intel стоит штукубаксов . Правильный это подход, неправильный - но работает же. А как - полезно проверить. В конце концов, как уже было сказано выше, в этом году нам наконец-то удастся познакомиться с новыми процессорами AMD - так что их в любом случае придется сравнивать со старыми. Вот сегодня и создадим «информационный задел» по старым и даже очень старым процессорам, благо представилась такая возможность.

Конфигурация тестовых стендов

Процессор AMD Phenom II X6 1075T AMD FX-8370
Название ядра Thuban Vishera
Технология пр-ва 45 нм 32 нм
Частота ядра std/max, ГГц 3,0/3,5 4,0/4,3
Кол-во ядер/потоков 6/6 4/8
Кэш L1 (сумм.), I/D, КБ 384/384 256/128
Кэш L2, КБ 6×512 4×2048
Кэш L3, МиБ 6 8
Оперативная память 2×DDR3-1333 2×DDR3-1866
TDP, Вт 125 125
Графика - -
Кол-во EU - -
Частота std/max, МГц - -
Цена - T-11149970

Главных героев будет два. FX-8370 процессор относительно новый - появился в конце 2014 года, но от FX-8350 (первенце семейства Vishera) отличается лишь тактовой частотой турбо-режима. Заметим, что формально топовыми представителями семейства являются FX-9370 и FX-9590, но и существуют последние лишь формально: TDP в 220 Вт мало того, что сам по себе многих отпугивает, так еще и приводит к проблемам совместимости со многими системными платами, а также вдумчивого подхода к выбору системы охлаждения. Ну а если это все не пугает, то не стоит забывать о том, что любые процессоры семейства FX имеют полностью разблокированные множители, позволяя сколь угодно тонкий тюнинг - в том числе, и по частоте. Это, кстати, еще одна причина того, что платформа до сих пор имеет определенную популярность у тех пользователей, кому неважен результат - главное, сам процесс. Который в данном случае еще и облегчается огромным кристаллом производимого по техпроцессу 32 нм процессора - обеспечить таковому теплоотвод очень просто (иногда недостатки могут становиться и достоинствами). Причем комплектация «боксовых» процессоров обновленными кулерами позволяет рассчитывать на неплохие результаты даже в таком варианте, который может оказаться еще и более дешевым, чем «традиционный» подход с ОЕМ-процессором и каким-нибудь «суперкулером». В общем, для ограниченного в средствах энтузазиста платформа интересна, несмотря на свою архаичность.

Но раз уж тестирование данной платформы все равно представляет собой экскурс в историю, мы решили по новой методике (включающей и изучение вопросов энергопотребления) протестировать и еще более старый процессор, относящийся к семейству Phenom II X6. До выхода первых FX в 2011 году - топовому в ассортименте компании. Более того - это навсегда лучшее решение для старых плат с «обычным» АМ3 и даже АМ2+. Причем, как показывали наши тесты, для процессоров семейства Phenom II использование DDR3 не так уж и необходимо, так что не удивимся, если где-то такие системы продолжают использоваться (в конце-концов даже по Конференции регулярно пробегают владельцы Pentium D - до сих пор:)). Лучше всего нам подошел бы топовый 1100Т, но такового не нашлось, а имеющийся 1075Т, увы, не Black Edition, так что корректным образом в старшую модель не превращается. Впрочем, даже при наличии возможности разгона множителем, неизвестно еще - насколько это корректно с точки зрения измерения энергопотребления, да и линейка сама по себе настолько старая (2010 год!), что, как нам кажется, большой разницы уже нет - тестировать 1100Т или 1075Т. Поэтому будет второй - раз уж он есть.

Процессор AMD Athlon X4 880K Intel Core i5-6400 Intel Core i7-880 Intel Core i7-3770
Название ядра Godavari Skylake Lynnfield Ivy Bridge
Технология пр-ва 28 нм 14 нм 45 нм 22 нм
Частота ядра std/max, ГГц 4,0/4,2 2,7/3,3 3,06/3,73 3,4/3,9
Кол-во ядер/потоков 2/4 4/4 4/8 4/8
Кэш L1 (сумм.), I/D, КБ 192/64 128/128 128/128 128/128
Кэш L2, КБ 2×2048 4×256 4×256 4×256
Кэш L3, МиБ - 6 8 8
Оперативная память 2×DDR3-2133 2×DDR3-1600 /
2×DDR4-2133
2×DDR3-1333 2×DDR3-1600
TDP, Вт 95 65 95 77
Графика - HDG 530 - HDG 4000
Кол-во EU - 24 - 16
Частота std/max, МГц - 350/950 - 650/1150
Цена T-13582517 T-12873939 - T-7959318

С кем будем сравнивать? Мы недаром выше упоминали Core i5-6400 - младший четырехъядерник современной линейки Intel непосредственно конкурирует по ценам со старшими моделями AMD (учитывая, конечно, замечание насчет видеокарты). По мнению некоторых читателей, и с решениями для LGA1156 в прошлый раз надо было сравнивать именно его, а не имеющий близкую цену и производительность, но все же двухъядерный Core i3-6320. Поэтому мы сегодня к списку испытуемых добавим и лучший процессор для упомянутой платформы, а именно Core i7-880, благо первые FX создавались в том числе и для конкуренции с таковыми. К сожалению, правда, вышли позднее, чем это было нужно для обеспечения таковой - уже во времена процессоров для LGA1155. Одна из таких моделей (пусть уже третьего, а не второго поколения Core) нами на данный момент протестирована - добавим и ее к списку испытуемых для полноты картины. И, заодно, самый быстрый Athlon X4 для FM2+ - для массовости. Тем более, что для поклонников продукции AMD это тоже в какой-то степени прямые конкуренты: FX-8370 безусловно «круче», но он ведь и дороже. Да еще и плюс архаичная платформа. А еще среди тестируемых, напомним, есть и Phenom II X6 1075T, так что любопытно будет посмотреть - как шесть, но старых ядер соотносятся с современными, но двумя модулями. Понятно, что четыре - интереснее, но простым и недорогим переход с Phenom II (не обязательно шестиядерным) будет только при наличии платы с АМ3+. Если же есть только АМ2+, так все равно менять все. Но если на такой плате, к примеру, установлен какой-нибудь Athlon II, производительности которого уже маловато, вопрос - найти на вторичном рынке Phenom II или менять платформу, вовсе не праздный.

Что касается прочих условий тестирования, все испытуемые работали в системе с дискретной видеокартой на базе Radeon R9 380 и 16 ГБ оперативной памяти. Тип и частота последней были максимальными поддерживаемыми процессорами - для всех, за исключением Phenom II X6 1075T, который мы тестировали с DDR3-1600, что проблем не вызывает (впрочем, на производительности тоже почти не сказывается).

Методика тестирования

Методика подробно описана в отдельной статье . Здесь же вкратце напомним, что базируется она на следующих четырех китах:

  • Методика измерения энергопотребления при тестировании процессоров
  • Методика мониторинга мощности, температуры и загрузки процессора в процессе тестирования

А подробные результаты всех тестов доступны в виде полной таблицы с результатами (в формате Microsoft Excel 97-2003) . Непосредственно же в статьях мы используем уже обработанные данные. В особенности, это относится к тестам приложений, где все нормируется относительно референсной системы (как и в прошлом году, ноутбука на базе Core i5-3317U с 4 ГБ памяти и SSD, емкостью 128 ГБ) и группируется по сферам применения компьютера.

iXBT Application Benchmark 2016

Как видим, появись модульная архитектура году так в 2010, ее «жизнь» существенно-упростилась бы: и пара модулей уже не уступает Core i5 того времени, а четыре могут убедительно превосходить даже четырехъядерные Core i7. Но, к сожалению (или к счастью), в 2011 году при разработке процессоров для LGA1155 Intel удалось существенно улучшить все характеристики своих изделий, причем настолько резко, что с тех пор подобных «подвигов» уже пять лет не наблюдается. В итоге старшие FX пришлось позиционировать не в сегмент между i5 и i7, а на уровень первых. Так что их цена вполне соответствует производительности, но не более того. Причем хорошо заметно, что других вариантов у компании и не было - перенос Phenom на более тонкий процесс производства вряд ли сумел их существенно «подстегнуть»: для того, чтобы обойти шесть старых ядер, уже зачастую достаточно и двух модулей, а не трех-четырех.

Особенно тогда, когда программное обеспечение не всегда может полноценно задействовать большое количество потоков вычисления, но требовательно к их качеству - включая и поддержку современных наборов команд и прочее. В итоге даже старшие FX ныне отстают уже и от младших Core i5, однако могло быть и хуже - что нам Phenom продемонстрировал. Собственно, как не раз уже было сказано - обычно интенсивные улучшения архитектуры дают свой эффект вовсе не в тех поколениях процессоров, в которых внедряются. Но чем далее - тем более важны.

А вот здесь - ничего не важно: был бы один быстрый поток. В таких условиях (что не секрет) процессорам AMD туго приходится, однако несложно заметить, что шансы быть самыми быстрыми на рынке в 2010 году у них были.

А вот в данном случае - и гипотетического не было. Впрочем, судя по небольшой разнице между FX и Phenom (причем даже не старшим) видно, что над оптимизацией таких сценариев работы никто и вовсе не занимался: все равно производительность для тех времен неплохая.

Как мы уже не раз писали, относительно старый целочисленный код - лучшее, что может встретиться в жизни модульным процессорам AMD. И хорошо заметно, что в общем-то для таких применений они во многом и разрабатывались: все-таки и шестиядерные Phenom II в 2010 уже не могли в таких задачах конкурировать с четырехъядерными Core i7, а вот для четырехмодульных FX это было посильной задачей. К сожалению, в конце 2011 года (когда первые процессоры этого семейства наконец-то появились физически) значительно усложнившейся.

Собственно, ария из той же оперы - как мы уже отмечали, упаковка данных по логике работы сходна с распознаванием текста. И по результатам тоже.

Явный аутсайдер здесь - Core i7-880, но просто потому, что LGA1156 поддерживала только SATA300. Как мы уже отмечали, чтоб разница стала вообще заметной, надо использовать быстрый SSD, с чем в те годы были сложности. Сейчас вот уже нет, так что это немного, но сказывается. А вот свои чипсеты AMD наделила поддержкой нового интерфейса уже тогда, так что в данном случае вообще обошлось без каких-либо шероховатостей.

Как мы уже не раз упоминали, разнообразные SMT-технологии программе «чужды», а вот количество «аппаратных» ядер и их качество - актуальны, что, например, выливается в то, что современный младший Core i5 быстрее старых Core i7. И даже не таких уж принципиально старых - позади остался не только 880, но и 3770. Первый отстал также и от FX-8370, что дело привычное. А вот шесть совсем старых архитектурно ядер в Phenom II… Два модуля современных процессоров AMD они обогнать могут, но с большим трудом - с тремя уже не справятся.

Что имеем в общем итоге? FX-8370 примерно в полтора раза быстрее, чем Athlon X4 880K - нормальная прибавка за счет удвоения ядер и добавление кэш-памяти третьего уровня. Но, к сожалению, этого уже маловато для конкуренции с современными процессорами Intel, что равные цены и то не полностью компенсируют. Хотя бы потому, что покупатель Core i5-6400 может обойтись без дискретной видеокарты, а выбравший FX - не может. Но если он ее все равно планирует приобрести, получается нечто близкое к паритету - до сих пор. Правда цены не его причина, а скорее следствие - недаром все годы они снижались.

Почему ситуация оказалась именно такой - в принципе, по результатам тоже можно предположить. Мы в точности не знаем - на какие годы пришлась основная часть разработки модульной архитектуры, но можно предполагать, что это было ранее 2011 года - ведь именно тогда (причем после нескольких задержек) первые процессоры для АМ3+ уже начали продаваться. Произойди это годом ранее, когда такие четырехъядерные процессоры, как Core i7-870/880 стоили в районе трех-пяти сотен долларов, эффект был бы заметным - сравнимым с выпуском первых Athlon. При этом для замены четырехъядерных Phenom или Core 2 Quad подошли бы двухмодульные процессоры (в т. ч. и модели с интегрированным GPU), а трехмодульные нормально бы смотрелись на фоне Phenom II X6 (или вместо таковых) и Core i5. Но в итоге процессорам пришлось конкурировать не с моделями для LGA1366 или LGA1156, а с новенькой (на тот момент) LGA1155, которая все еще неплоха и на фоне более новых платформ Intel. Которые, впрочем, стали еще лучше, а старые FX так и живут на рынке без серьезных изменений с 2012 года. Что и приходится компенсировать ценами, которые сначала были между Core i5 и i7, потом на уровне старших i5, потом средних, теперь вот младших. Поскольку и потребительские характеристики процессоров таким ценам примерно и соответствуют. Только вот Core i5 - очень дешевые для производства процессоры, а FX - дорогие. Так что этот порочный круг пора бы и разорвать - чем дальше, тем это сложнее. Будем надеяться, что в этом году все получится.

Энергопотребление и энергоэффективность

Впрочем, что касается энергопотребления, то и в те годы с ним было не все гладко, а с точки зрения современности 200 Вт весьма пугающи. Понятно, что это включая и то, что «проходило» через плату для питания видеокарты - но ведь она для всех одинаковая. А вот «прожорливость» трехчиповой платформы - в чистом виде ее особенность и «привет из нулевых»: современные намного экономичнее. Впрочем, если обратить внимание на собственно потребности процессора, то там тоже до 140 Вт дело доходило, т. е. для AMD превышение уровня TDP как раз обычное дело (хотя некоторые по-старинке до сих пор пытаются ругать за это Intel). А вот Phenom II X6 на первый взгляд выглядит лучше. Но не стоит забывать, что это совсем не старшая модель линейки, во-первых, и что энергопотребление имеет смысл лишь в связке с производительностью, во-вторых.

А с этой точки зрения модульная архитектура была явным шагом вперед. Отметим также, что FX ведут себя лучше, чем Athlon - хотя бы потому, что общая кэш-память третьего уровня (которой в процессорах для FM2/FM2+ нет) положительно сказывается на производительности, но не слишком прожорлива. Правда и места занимает много, почему ее реализация в процессорах с интегрированными GPU оказалась невозможной. Но в общем и целом становится понятным, почему компания не стала делать шринк FX на техпроцесс 28 нм: в APU он позволил увеличить мощность графики, но процессорным ядрам не дал бы ничего или почти ничего. И тревожный звоночек «бил в набат» еще пять лет назад: достичь уровня производительности 45-нанометровых процессоров Intel удалось, но ценой излишнего энергопотребления (кто сказал «NetBurst»?) . А дальше ситуация только усугублялась.

iXBT Game Benchmark 2016

А могут ли эти процессоры хорошо поработать в игровом компьютере? Вообще говоря, да - ведь основная нагрузка ложится на видеокарту. Но сколько возможностей последней «пропадет» из-за процессора? Особенно непраздным этот вопрос, кстати, является для пользователей плат с AM2+ или «обычным» AM3, где Phenom II X4/X6 - лучшее из доступного без смены платформы, а некогда популярные Athlon II с т. з. современности уже совсем ничего «не тянут».

Случай, когда критична «однопоточная производительность», что ставит все процессоры AMD в неудобное положение. Производительность даже (уже) недорогого R9 380 «сдерживают» все испытуемые. Но и играть с комфортом можно на всех же.

А здесь все справляются близко к максимуму возможного. И, кстати, обратите внимание - старые Phenom II заметно лучше новых Athlon.

Здесь хуже, однако, опять же, уже Phenom II ничуть не хуже любых Core 2 Quad или там Core i5/i7. А FX уже способны «пободаться» и с более новыми i5/i7.

Но в более новой игре серии Phenom II держится на равных (уже на равных) лишь с Athlon. Чего, впрочем, для практического использования вполне достаточно - но могло бы быть лучше. Хотя бы на уровне FX, который в FHD уже позволяет выбранной видеокарте «выложиться» на полную.

А здесь все примерно одинаковы - различия есть только в режиме со сниженным разрешением. И, что забавно, они скорее в пользу АМ3+, чем наоборот.

Когда все определяется видеокартой, хороши и процессоры пяти-шестилетней давности. Наиболее мощные из них, конечно. Но и стоить они чуть позже начали очень дешево.

FX ведет себя неплохо, время Phenom II, увы, истекло. С другой стороны, если такой процессор уже есть, то менять в игровом компьютере его вовсе не обязательно - заметного эффекта не будет. Лучше уж видеокарту еще мощнее поставить.

Вот Thief явно «голосует» за мощные платформы - и считает таковыми лишь современный ассортимент Intel. C одной стороны. С другой - нельзя сказать, что что-то совсем уж не работает. Порядка 40 кадров есть - при желании сэкономить на смене платформы, это можно считать достаточным.

Вот в этой паре зависимость частоты кадров от производительности процессоров уже есть. Но, собственно, и что? Абсолютные результаты всех испытуемых более чем достаточны для комфортной игры. Так что в конечном итоге приходим к тому, что для недорогого игрового компьютера «старый дуб еще пошумит». Естественно, если он уже есть (или может быть приобретен очень дешево). И, естественно, учитывая тот факт, что даже для бюджетных современных видеокарт такой процессор может оказаться «ограничительным фактором». Не в том плане, что поиграть не удастся, а в том, что производительность, все же, будет более низкой, чем потенциально возможная. Но и это до сих пор происходить будет не всегда.

Итого

В принципе, ничего необычного в итоге мы не получили - платформа формально «живая» и актуальная, но на самом деле давно не обновляемая. Нужны же обновления или нет - вопрос дискуссионный. Некоторым, например, не нравится, что Intel постоянно что-то модернизирует, почти не меняя производительность процессоров. С другой стороны, за одни и те же деньги производительность постоянно (пусть и медленно) растет, а необходимость в смене платформ обусловлена в первую очередь их функциональностью. В итоге какая-нибудь топовая системная плата пятилетней давности, например, выглядит уныло и бледно на фоне даже самых бюджетных современных предложений, ценой раз в пять ниже. Если же ничего не трогать, то и производительность расти не будет, и в остальном характеристики компьютера так и будут оставаться типичными для пяти-семилетней давности. Другой вопрос, что во многих случаях этого вполне достаточно, и в случае разумной ценовой политики «исторические» платформы оказываются вполне пригодны для практического применения, пока физически не исчезнут из эксплуатации, что случится, очевидно, еще позже окончания продаж.

В начале года, 8 января, компания AMD представила новую платформу AMD Dragon, основанную на процессоре нового семейства AMD Phenom II. Первоначально компания AMD продемонстрировала лишь два процессора данного семейства: AMD Phenom II X4 940 и AMD Phenom II X4 920, которые совместимы с разъемом AM2+ и поддерживают память DDR2. Позднее были представлены процессоры семейства AMD Phenom II, совместимые с разъемом AM3 и поддерживающие как DDR2-, так и DDR3-память. В этой статье мы рассмотрим результаты тестирования новых процессоров AMD семейства Phenom II.

Модельный ряд процессоров семейства AMD Phenom II

Главное отличие новых процессоров семейства AMD Phenom II от процессоров семейства AMD Phenom заключается в том, что они выполнены по 45-нм техпроцессу с применением технологии SOI, в то время как процессоры семейства AMD Phenom выполняются по 65-нм техпроцессу.

Точно так же, как и процессоры семейства AMD Phenom, они представляют собой истинно многоядерные процессоры, то есть все ядра процессора выполнены на одном кристалле.

Среди нововведений, реализованных в новых процессорах AMD Phenom II, можно также отметить усовершенствованную технологию AMD Cool’&’Quiet 3.0. Она объединяет в себе ряд функций, позволяющих снизить энергопотребление процессора в те моменты, когда он недозагружен, а также предотвратить перегрев процессора.

При анонсе нового процессора семейства AMD Phenom II X4 компания AMD указывала и на другие преимущества в сравнении с предыдущим семейством. В частности, отмечалось, что новые процессоры выполняют больше инструкций за такт (Instruction Per Clock, IPC).

Семейство процессоров AMD Phenom II в настоящее время включает три серии: AMD Phenom II X4 900, AMD Phenom II X4 800 и AMD Phenom II X3 700.

Процессоры серии AMD Phenom II X4 900

Сейчас в 900-ю серию процессоров входят две четырехъядерные модели: AMD Phenom II X4 940 и AMD Phenom II X4 920. Каждое ядро процессора AMD Phenom II X4 900-й серии имеет выделенный L2-кэш размером 512 Кбайт и разделяемый между всеми ядрами L3-кэш размером 6 Мбайт.

Процессор AMD Phenom II X4 940 имеет тактовую частоту 3,0 ГГц, а процессор AMD Phenom II X4 920 - 2,8 ГГц. Эти процессоры оснащены интегрированным двухканальным контроллером памяти DDR2 и поддерживают память DDR2-667/800/1066.

Процессоры AMD Phenom II X4 940 и AMD Phenom II X4 920 совместимы с разъемами Socket AM2+/AM2 и поддерживают шину HyperTransport 3.0 на скорости до 3600 МГц (двусторонняя) с пропускной способностью до 16 Гбайт/с. Оба процессора имеют TDP 125 Вт.

Разница между моделями процессоров AMD Phenom II X4 940 и AMD Phenom II X4 920 заключается не только в тактовой частоте, но еще и в том, что процессор AMD Phenom II X4 940 имеет разблокированный множитель, что позволяет реализовывать его эффективный разгон. Вообще, если говорить о разгонном потенциале процессора AMD Phenom II X4 940, то, по сообщениям независимых источников в Интернете, он достаточно большой. Так, есть данные, что применение жидкого азота для охлаждения процессора позволило достичь рекордной тактовой частоты в 6 ГГц, а посредством обычного воздушного охлаждения этот процессор легко разгоняется до 4 ГГц.

Добавим также, что в скором времени ожидается появление процессора AMD Phenom II X4 910, который будет иметь тактовую частоту 2,6 ГГц.

Процессоры серии AMD Phenom II X4 800

На данный момент 800-я серия процессоров включает всего одну модель четырехъядерного процессора - AMD Phenom II X4 810. Однако в скором времени ожидается появление еще одной модели - AMD Phenom II X4 805.

Отличие процессоров 800-й серии от процессоров 900-й серии заключается в урезанном размере кэша L3 и в том, что в процессорах 800-й серии реализован контроллер памяти, поддерживающий память как DDR2, так и DDR3. Кроме того, процессоры 800-й серии совместимы как с разъемами Socket AM2+/AM2, так и с разъемом Socket AM3.

Каждое ядро процессора AMD Phenom II X4 810 имеет выделенный L2-кэш размером 512 Кбайт и разделяемый между всеми ядрами L3-кэш размером 4 Мбайт. Процессор AMD Phenom II X4 810 работает с тактовой частотой 2,6 ГГц. Он оснащен интегрированным двухканальным контроллером памяти DDR2 (поддерживается память DDR2-667/800/1066) и контроллером памяти DDR3 (поддерживается память DDR3-800/1066/1333). TDP процессора составляет 95 Вт.

Процессоры серии AMD Phenom II X3 700

В настоящее время в 700-ю серию процессоров входят две модели: AMD Phenom II X3 720 и AMD Phenom II X3 710. Все процессоры 700-й серии являются трехъядерными. Каждое ядро процессора AMD Phenom II X4 720 и AMD Phenom II X3 710 имеет выделенный L2-кэш размером 512 Кбайт, а разделяемый между всеми ядрами L3-кэш имеет размер 6 Мбайт.

Как и процессоры 800-й серии, процессоры 700-й серии имеют интегрированный двухканальный контроллер памяти DDR2 (поддерживается память DDR2-667/800/1066) и контроллер памяти DDR3 (поддерживается память DDR3-800/1066/1333).

Процессор AMD Phenom II X3 720 работает на тактовой частоте 2,8 ГГц, а процессор AMD Phenom II X3 710 - на тактовой частоте 2,6 ГГц. Еще одно различие между AMD Phenom II X3 720 и AMD Phenom II X3 710 заключается в том, что в модели AMD Phenom II X3 720 разблокирован множитель, а следовательно, его можно легко разгонять.

Методика тестирования

Тестирование процессоров проводилось в два этапа. На первом этапе определялась производительность процессоров в различных приложениях, а на втором - в разных играх.

В ходе тестирования каждый тест запускался пять раз с перезагрузкой компьютера после каждого прогона теста и выдерживанием двухминутной паузы после перезагрузки. По результатам пяти прогонов теста рассчитывались средний арифметический результат и среднеквадратичное отклонение.

Весь процесс тестирования был полностью автоматизирован, для чего применялся специальный скрипт, который последовательно запускал все необходимые тесты, выполнял перезагрузку, выдерживал необходимые паузы и т.д. В этом тестовом скрипте для определения производительности в различных приложениях использовались следующие бенчмарки и приложения:

  • DivX Converter 6.6.1;
  • DivX Codec 6.8.5;
  • DivX Player 6.8.2;
  • Windows Media Encoder 9.0;
  • MainConcept Reference v.1.1;
  • VLC media player 0.8.6;
  • Lame 4.0 Beta;
  • WinRAR 3.8;
  • WinZip 11.2;
  • Adobe Photoshop CS4;
  • Microsoft Excel 2007.

Приложение DivX Converter 6.6.1 с кодеком DivX Codec 6.8.5 применялось для определения производительности при конвертировании исходного видеофайла в видеофайл формата DivX (предустановка Ноme Theater в приложении DivX Converter 6.6.1).

Приложение Windows Media Encoder 9.0 (WME 9.0) использовалось для определения производительности при конвертировании видеофайла, записанного в формате WMV, в видеофайл с меньшими разрешением и видеобитрейтом.

Приложение MainConcept Reference v.1.1 (кодек H.264) применялось для определения производительности при конвертировании исходного видеофайла, записанного в формате WMV, в видеофайл с иным разрешением и видеобитрейтом (предустановка Н.264 HDTV 720p).

Приложение Lame 4.0 Beta использовалось для определения производительности при конвертировании аудиофайла из WAV- в MP3-формат.

Приложение DivX Player 6.8.2 применялось в паре с приложением WME 9.0 для создания многозадачного теста. Смысл этого теста заключался в том, чтобы на фоне проигрывания видеофайла с применением приложения DivX Player 6.8.2 запускался процесс конвертирования этого же видеофайла с помощью приложения WME 9.0.

Еще один многозадачный тест заключался в том, чтобы одновременно проигрывать два видеофайла с помощью плеера VLC media player 0.8.6 и одновременно с этим производить конвертирование еще одного видеофайла с использованием приложения WME 9.0 и конвертирование аудиофайла из формата WAV в формат MP3 посредством приложения Lame 4.0 Beta.

Приложения WinRAR 3.8 и WinZip 11.2 применялись для определения производительности при архивировании и разархивировании большого количества цифровых фотографий в формате TIF. При сжатии данных с помощью программы WinRAR 3.8 использовалась максимальная степень компрессии и шифрование по алгоритму AES-128. При архивировании с применением программы WinZip 11.2 применялись максимальная степень компрессии и шифрование по алгоритму AES-256.

Приложение Adobe Photoshop CS4 использовалось нами для определения производительности системы при обработке цифровых фотографий. Наш тест с приложением Adobe Photoshop CS4 разбит на три подтеста. В первом из них мы последовательно применяли различные ресурсоемкие фильтры к одной и той же фотографии, имитируя при этом процесс ее художественной обработки.

В следующем подтесте с приложением Adobe Photoshop CS4 имитировалась пакетная обработка большого количества фотографий. Всего в тесте проводилась пакетная обработка 23 фотографий в формате TIF.

В третьем подтесте с приложением Adobe Photoshop CS4 имитировалась пакетная обработка RAW-фотографий.

Приложение Microsoft Excel 2007 применялось для определения производительности системы при выполнении вычислений в электронных таблицах Excel. Мы использовали две задачи в приложении Excel. Первая заключалась в пересчете электронной таблицы, а вторая состояла в имитации метода Монте-Карло для вероятностной оценки экономического риска.

Отметим, что результаты всех перечисленных тестов зависят от производительности процессора, памяти и жесткого диска. Однако они практически никак не зависят от производительности видеокарты.

Во всех перечисленных тестах результатом является время выполнения тестового задания, и чем оно меньше, тем лучше.

Для оценки производительности процессоров в играх использовались следующие игры и бенчмарки:

  • Quake 4 (Patch 1.42);
  • S.T.A.L.K.E.R.: Shadow of Chernobyl (Patch 1.005);
  • S.T.A.L.K.E.R.: Clear Sky (Patch 1.007);
  • Half-Life 2: Episode 2;
  • Crysis v.1.2.1;
  • Left4Dead;
  • Call of Juares Demo Benchmark v. 1.1.1.0;
  • 3DMark06 v. 1.1.0;
  • 3DMark Vantage v. 1.0.1.

В тестах Quake 4, S.T.A.L.K.E.R.: Shadow of Chernobyl, S.T.A.L.K.E.R.: Clear Sky, Half-Life 2: Episode 2, Crysis, Left4Dead и Call of Juares Demo Benchmark результатом являлось количество отображаемых кадров в секунду (frames per second, fps), а в бенчмарках 3DMark06 и 3DMark Vantage результат представлялся в безразмерных единицах (3DMark Score).

В ходе тестирования каждый игровой тест (за исключением 3DMark Vantage v. 1.0.1) запускался при разрешении экрана 1280x800, 1440x900, 1680x1050 и 1920x1200 точек. При каждом разрешении экрана игровые тесты запускались по пять раз с перезагрузкой компьютера после каждого прогона и выдерживанием двухминутной паузы после перезагрузки. Бенчмарк 3DMark Vantage v. 1.0.1 запускался по пять раз в каждом из четырех пресетов (Entry, Performance, High и Extreme).

По результатам пяти прогонов рассчитывались средний арифметический результат и среднеквадратичное отклонение. Весь процесс тестирования был полностью автоматизирован, для чего использовался специальный скрипт, который последовательно запускал все необходимые тесты, выполнял перезагрузку компьютера, выдерживал необходимые паузы и т.д.

Игра Crysis тестировалась с двумя демо-сценами, одна из которых служила для тестирования графического процессора, а другая - для тестирования центрального процессора в совокупности с графическим, поскольку при проигрывании затрагивает физическую составляющую движка игры (обе демо-сцены входят в комплект игры).

Все игры запускались в двух режимах настройки: максимальная производительность и максимальное качество. Режим настройки на максимальную производительность достигался за счет отключения таких эффектов, как анизотропная фильтрация текстур и экранное сглаживание, а также установки низкой детализации изображения и т.д. То есть данный режим был направлен на то, чтобы получить максимально возможный результат (максимальное значение FPS). В данном режиме настройки результат в большей степени зависит от производительности процессора и в меньшей степени от производительности видеокарты.

Режим настройки на максимальное качество достигался за счет использования высокой детализации, различных эффектов, анизотропной фильтрации текстур и экранного сглаживания. В данном режиме настройки результат в большей степени зависит от производительности видеокарты и в меньшей степени от производительности процессора.

При тестировании компьютеров по описанной выше методике мы традиционно используем понятие интегральной оценки производительности и соответственно понятие референсного ПК. Дело в том, что сами по себе результаты тестирования еще не дают представления о производительности ПК. Действительно, зная, что время конвертирования видеофайла составляет 120 с, еще нельзя сделать вывод о производительности, поскольку непонятно - много это или мало. То есть результаты тестирования имеют смысл лишь при возможности их сопоставления с результатами некоторого рефернсного ПК. Для сравнения производительности тестируемого и референсного ПК осуществлялось нормирование результатов, для чего время выполнения каждого тестового задания референсным ПК делилось на время выполнения этого же задания тестируемым процессором.

Для расчета интегральной оценки производительности на наборе приложений нормированные результаты тестов разбивались на шесть групп: конвертирование видео, конвертирование аудио, многозадачные тесты, работа с архиваторами, работа с Photoshop, работа с Excel. Далее в каждой группе тестов рассчитывался промежуточный интегральный результат как среднее геометрическое от нормированных результатов. После этого рассчитывалось среднее геометрическое от промежуточных интегральных результатов по всем группам тестов. Для удобства представления результатов полученное значение умножалось на 1000. Это и является интегральной оценкой производительности компьютера на наборе приложений. Для референсного ПК интегральный результат производительности на наборе приложений равен 1000 баллов, а для тестируемого ПК может быть как больше, так и меньше 1000 баллов.

В игровых приложениях также рассчитывается интегральный результат производительности, однако подход в данном случае несколько иной. Первоначально для каждой игры в каждом режиме настройки по формуле рассчитывается средневзвешанный по всем разрешениям результат.

В данной формуле результаты для различных разрешений имеют разные весовые коэффициенты, причем максимальный весовой коэффициент имеет результат для разрешения 1440x900.

После этого рассчитывается среднее геометрическое между определенными по описанной выше формуле результатами для режима максимального качества и максимальной производительности. Найденный таким образом результат представляет собой интегральную оценку производительности ПК в отдельной игре.

Для получения интегральной оценки производительности в тесте 3DMark Vantage рассчитывается среднее геометрическое между результатами для всех пресетов по формуле .

Далее интегральные оценки производительности в каждой отдельной игре нормируются на аналогичные результаты для референсного ПК и рассчитывается среднее геометрическое по всем нормированным интегральным результатам. Для удобства представления результатов полученное значение умножается на 1000. Это и является интегральной оценкой производительности компьютера в играх. Для референсного ПК интегральный результат производительности в играх равен 1000 баллов.

В качестве референсной конфигурации мы использовали самый производительный (и самый дорогой) на начало 2009 года компьютер. Конфигурация референсного ПК была следующей:

  • процессор - Intel Core i7 Extreme 965 (тактовая частота 3,2 ГГц);
  • системная плата - ASUS RAMPAGE II EXTREME;
  • чипсет системной платы - Intel X58 Express;
  • память - DDR3-1066 (Qimonda IMSH1GU03A1F1C-10F PC3-8500);
  • объем памяти - 3 Гбайт (три модуля по 1024 Мбайт);
  • режим работы памяти – DDR3-1333, трехканальный режим;
  • тайминги памяти - 7-7-7-20;
  • видеокарта - две видеокарты GeForce GTX295 в режиме 4-Way SLI;
  • видеодрайвер - ForceWare 181.20;

Еще раз отметим, что наш референсный ПК является очень «навороченным» - это самый производительный и дорогой на данный момент компьютер. То есть интегральные результаты производительности всех остальных компьютеров должны быть ниже 1000 баллов.

Конфигурация тестового стенда

Мы протестировали три процессора семейства AMD Phenom II: AMD Phenom II X4 940, AMD Phenom II X4 810 и AMD Phenom II X4 720. Дабы обеспечить одинаковые для всех трех процессоров условия тестирования и с учетом того, что процессоры AMD Phenom II X4 810 и AMD Phenom II X4 720 поддерживают память как DDR2, так и DDR3, а процессор AMD Phenom II X4 940 - только память DDR2, для тестирования процессоров использовался стенд следующей конфигурации:

  • системная плата - ASUS M3A78-T;
  • чипсет системной платы - AMD790GX+SB750;
  • память - DDR2-1066 (A-Data);
  • объем памяти - 2 Гбайт (два модуля по 1024 Мбайт);
  • режим работы памяти - DDR2-1066, двухканальный режим;
  • тайминги памяти - 5-5-5-15;
  • видеокарта -Zotac GeForce GTX295;
  • видеодрайвер - ForceWare 182.05;
  • жесткий диск - Intel SSD X25-M (Intel SSDSA2MH080G1GN).

Результаты тестирования

Итак, после знакомства с методикой тестирования и алгоритмом расчета интегральных результатов производительности в приложениях и играх можно перейти к оглашению результатов тестирования.

В таблице приведено время выполнения тестовых задач в секундах для тестируемых процессоров и референсного ПК, а на рис. 1 представлены нормированные скорости выполнения тестовых задач. На рис. 2-20 представлены результаты тестирования процессоров в игровых приложениях.

Рис. 1. Нормированные скорости выполнения тестовых задач

Как видно по результатам тестирования, в неигровых приложениях производительность процессоров AMD Phenom II X4 ранжируется в следующем порядке: Phenom II X4 940, Phenom II X4 810, Phenom II X3 720. Причем производительность четырехъядерного процессора Phenom II X4 810 примерно на 19% выше производительности трехъядерного процессора Phenom II X3 720, а производительность процессора Phenom II X4 940 примерно на 15% выше производительности процессора Phenom II X4 810 и на 37% выше производительности процессора Phenom II X3 720.

Рис. 2. Результаты тестирования
в игре Quake 4 (Patch 1.42)
при настройках на минимальное качество

Рис. 3. Результаты тестирования
в игре Quake 4 (Patch 1.42)
при настройках на максимальное качество

С выпуском процессоров семейства Phenom II компания AMD смогла вернуть к себе внимание пользователей, укрепив значительно пошатнувшиеся позиции на процессорном рынке. Недавно AMD перевела свои CPU на поддержку памяти стандарта DDR3, тем самым выпустив модели с новым конструктивом — Socket AM3, который дополнил присутствующие на рынке решения с разъемом AM2 и AM2+, поддерживающие DDR2. Особенностью новых процессоров является полная совместимость с платами, оснащенными сокетом AM2+, что дало возможность многим пользователям провести апгрейд при минимальных финансовых затратах без замены своей материнской платы.

Основное преимущество плат под Socket AM3 кроется в поддержке более скоростной памяти DDR3, что уже само по себе делает эти решения более актуальными и современными. С другой стороны, известно, что из-за более высокой латентности преимущества низкочастотных модулей памяти DDR3 над обычной DDR2 стремится к нулю. На данный момент по цене между памятью разных стандартов установился примерный паритет, за исключением разве что высокочастотных «оверклокерских» комплектов DDR3, стоимость которых уж никак не отличается демократичностью. Пара планок, рассчитанных на частоту 1600 МГц и выше, пока что обходятся дороже такого же по объему комплекта более старой DDR2, работающей на 1066 МГц. Да и стоимость материнских плат с прогрессивным разъемом Socket AM3 выше аналогов под процессоры AM2+.

Несмотря на ценовой фактор, пользователи все же присматриваются к новому типу памяти, и становится интересно взглянуть на зависимость производительности процессоров AMD при различной частоте памяти и ее таймингов. Для этого мы сравним трехяъдерный и четырехъядерный процессоры Phenom II при рабочих частотах оперативной памяти от 800 МГц (DDR2) до 1600 МГц (DDR3), что даст возможность выявить не только различия в производительности между платформами AM2+ и AM3, но и отследить динамику зависимости результатов от пропускной способности оперативной памяти.

В нашем тестировании использовались процессоры Phenom II X3 720 BE и Phenom II X4 955 BE, работающие на номинальных 2,8 и 3,2 ГГц соответственно. Мы специально подобрали два процессора с разной вычислительной мощностью и числом ядер, чтобы выявить актуальность высокочастотных модулей памяти с большей пропускной способностью как для старших представителей семейства Phenom II, так и для моделей среднего класса.

Характеристики процессоров

Основные данные по процессорам занесены в следующую таблицу:

AMD Phenom II X4 955 BE AMD Phenom II X3 720 BE
Ядро Deneb Heka
Техпроцесс, нм 45 SOI 45 SOI
Разъем AM3 AM3
Частота, МГц 3200 2800
Множитель 16 14
Тактовый генератор 200 200
Кэш L1, КБ 128 x 4 128 x 3
Кэш L2, КБ 512 x 4 512 x 3
Кэш L3, КБ 6144 6144
Напряжение питания, В 0,875-1,5 0,850-1,425
TDP, Вт 125 95

Также приводим пару скриншотов утилиты CPU-Z с данными рассматриваемых процессоров:

Тестовая конфигурация

Тестирование платформы Socket AM2+ проводилась на следующей конфигурации:

  • Процессоры AMD Phenom II X3 720 BE, Phenom II X4 955 BE;
  • Кулер: Thermalright Ultra-120 eXtreme;
  • Материнская плата: MSI 790XT-G45;
  • Видеокарта: Point of View GF9800GTX 512MB GDDR3 EXO (@818/1944/2420 МГц);
  • Память: OCZ OCZ2FXE12004GK (2х2GB DDR2-1200);
  • Звуковая карта: Creative Audigy 4 (SB0610);
  • Жесткий диск: WD3200AAKS (320 ГБ, SATA II);
  • Блок питания: FSP FX700-GLN (700 Вт);
  • Операционная система: Windows Vista Ultimate SP1 x64;
  • Драйвер видеокарты: ForceWare 190.62.
Для Socket AM3 было лишь два изменения:
  • Материнская плата: MSI 790FX-GD70;
  • Память: Kingston KHX1600C9D3K2/4G (2х2GB DDR3-1600).
Прежде чем переходить к рассмотрению режимов нашего тестирования хотелось бы пару слов сказать о таких параметрах работы контроллера памяти, как Ganged и Unganged. На современных платах AMD контроллер изначально установлен в Ungaged, в то время как первые материнские платы на AMD 790FX под старые Phenom первого поколения по умолчанию работали в режиме Ganged. В последнем варианте контроллер сообщается с памятью по шине шириной 128 бит, т.е. в обычном двухканальном режиме. В режиме Ungaged контроллер может работать независимо с двумя 64-битными каналами, что теоретически более актуально для многопоточных приложений. Действительно ли это так, мы тоже проверим в нашем тестировании.

Поскольку по умолчанию включен режим Ungaged, то он и использовался как основной. В режиме Gunged проведены дополнительные тесты только лишь при максимальной частоте памяти DDR2 и DDR3, поскольку логично было бы предположить, что именно при большей пропускной способности памяти более будут заметны особенности функционирования контроллера памяти.

Также мы провели ряд дополнительных тестов при увеличенной частоте встроенного в процессор северного моста NB, на частоте которого работает контроллер памяти и кэш третьего уровня. Теоретически, при увеличении частоты NB мы должны получить и вполне ощутимый прирост производительности. Опять же, для выявления зависимости производительности от данного фактора мы проводили тест только при максимальной частоте памяти. К сожалению, из-за недостатка времени, пришлось ограничиться тестами лишь на Socket AM3 в сочетании с DDR3.

Для обоих процессоров в каждом режиме тестирования устанавливались одинаковые тайминги, параметры Drive Strength оставлялись в режиме Auto.


Режимы тестирования

Модули памяти с данной частотой наиболее распространенные и доступные. Задержки 5-5-5-18 являются для этой памяти стандартными (за исключением оверклокерских планок с низкими таймингами). Впрочем, в последнее время на рынке появилось множество модулей рассчитанных на CL6, но и они обычно без проблем работают при более низких задержках.


Для Phenom II X3 720 BE и Phenom II X4 955 BE при данной частоте памяти DDR2 все тайминги фиксировались на следующих значениях:


Максимально возможный для процессоров AMD режим работы памяти DDR2.


В первом случае мы использовали довольно высокие тайминги, которые устанавливались в следующие значения:


Более актуальный режим при CAS Latency 5.


Задержки памяти устанавливались для процессоров в следующие значения:

Настройки памяти идентичны предыдущей конфигурации, но контроллер работает в режиме Ganged.


Официально процессоры Phenom II поддерживают лишь память DDR3-800/1066/1333, но топовые материнские платы позволяют в номинале устанавливать частоту 1600 МГц. Значения 800 МГц и 1066 МГц малоинтересны, так как даже самые дешевые из доступных сейчас на рынке комплектов памяти DDR3 рассчитаны на 1333 МГц. Именно поэтому для нашего тестирования использовались режимы DDR3-1333 и DDR3-1600.

Для первого режима устанавливались задержки, которые в целом не сильно отличаются от стандартных таймингов дешевых модулей DDR3-1333.


С модулями памяти, рассчитанными на частоту 1600 МГц, уже не все так однозначно в плане таймингов. Некоторые из комплектов работают на таких частотах при CL9, но большинство современных оверклокерских наборов изначально рассчитаны на тайминги уровня 8-8-8 (а то и 7-7-7), поэтому именно такая конфигурация использовалась для наших тестов.



Вот только в таком «скоростном» режиме Phenom II X3 720 BE напрочь отказывался нормально функционировать и никакие манипуляции не помогали добиться стабильности именно при таких таймингах. Только при задержках 9-10-10-24 система работала без сбоев. Так что при частоте памяти 1600 МГц пришлось ограничиться тестами лишь одного Phenom II X4 955 BE. Отметим также, что такая «несовместимость» была у нас единичным случаем, и Phenom II X2, и даже Athlon II X2 (которые будут фигурировать в следующих наших статьях) без всяких проблем работали с памятью DDR3-1600.

Поскольку Phenom II X3 720 BE работал только с DDR3-1333 МГц, то именно при такой частоте памяти мы тестировали оба процессора в режиме контроллера Ganged.



Тесты с повышенной частотой встроенного северного моста в процессор (NB) проводились уже на разных частотах памяти, соответственно для младшей модели при DDR3-1333, для старшей при частоте памяти 1600 МГц.


Все тайминги идентичны режиму DDR3-1333 7-7-7-20.


Все тайминги идентичны режиму DDR3-1600 8-8-8-24.
Результаты тестирования

Lavalys Everest Memory Benchmark

Ниже приведены данные встроенного в программу Lavalys Everest теста производительности подсистемы памяти. Для уменьшения погрешности этот бенчмарк прогонялся по пять раз для каждого режима. Буквой U на диаграммах обозначен режим Unganged, а G, соответственно, Ganged.


Весьма ощутимый рост при повышении пропускной способности памяти. С DDR2 в режиме Ganged мы получаем еще более 8% прироста, но уже при использовании DDR3 в таком режиме выигрыш в скорости чтения мизерный.


Тут уже тайминги памяти и ее частота почти никак не сказываются на результате, но есть мизерное падение при работе в режиме Ganged. А вот прирост от повышения частоты встроенного северного моста очень высокий.


В глаза сразу же бросается огромная разница в режиме контроллера Ganged на платформе AM2+ и AM3. Если на первой активация такого режима приводит лишь к незначительному падению результатов, то на AM3 разница достигает 20%. Так же заметна весьма ощутимое отставание при использовании памяти DDR2-800, а вот уже между DDR2-800 и DDR3-1333 (или даже DDR3-1600) разница значительно меньше.


В целом латентность памяти все же незначительно уменьшается при активации Ganged. Разница между DDR2-1066 и DDR3-1333 оказывается меньше чем между DDR2-800 и DDR2-1066, причем отставание в конфигурации с DDR2-800 наиболее заметно на старшем процессоре.

PCMark Vantage

В последней версии приложения PCMark результаты не отличаются стабильными показателями. Изначально планировалось провести сравнение наших процессоров в наборах тестов PCMark Suite, Memory Suite и Productivity Suite, но разброс результатов в первом и последнем был довольно велик и итоговые данные получались абсолютно неадекватны. Только показатели в Memory Suite отличались завидной стабильностью, именно их мы и приводим.


А вот этот тест практически безразличен к частоте памяти и прочим настройкам, но все же небольшое падение результатов при активации режима Ganged имеет место. Разгон NB традиционно приносит некоторый прирост.

WinRar 3.90 b1

Встроенный тест производительности прогонялся по семь раз.


Данное приложение оказывается довольно чувствительным к изменениям частоты памяти, прирост производительности от NB тоже заметен, хотя он совсем небольшой. А вот режим Ganged вновь негативно сказывается на итоговом результате.

7-Zip 4.65

Встроенный тест производительности прогонялся по пять раз.


Этот архиватор уже никак не реагирует на изменение пропускной способности памяти. Если на старшем четырехъядерном процессоре еще хоть как-то прослеживается положительная динамика роста результатов с повышением частоты оперативной памяти (в Ganged снова присутствует некоторое понижение итогового балла), то уже на Phenom II X3 разница между всеми режимами исчисляется сотыми долями процента, все различия обуславливаются погрешностью измерений, из-за чего и проследить какую-нибудь зависимость по этим данным уже нельзя.

Paint.Net 3.36

Для тестов использовался специальный бенчмарк версии 3.20. Для увеличения точности полученных результатов тест прогонялся по семь раз. Отметим, что и разброс результатов после каждого прогона теста на старшем процессоре был меньше чем на младшем, и, скорее всего, результаты Phenom II X3 вновь не стоит рассматривать как очень точные из-за влияния большей погрешности.


Производительность в разных режимах различается незначительно. Заметно, что в режиме Ganged время выполнения теста немного ускоряется. Phenom II X3 в сочетании с DDR3-1333 оказывается почему-то медленней чем в сочетании с DDR2-1066, в то время как уже Phenom II X4 с DDR3 демонстрирует результаты лучше, чем с DDR2. Впрочем, не будем забывать о большем влиянии погрешности на Phenom II X3. Этот фактор, возможно, обусловил и некое падение производительности при увеличении частоты NB, в то время как на Phenom II X4 мы вновь наблюдаем вполне ожидаемый рост результата в таком режиме.

CineBench 10

В данном приложении тест повторялся по три раза для каждого режима.



И опять разница в результатах настолько незначительна, что ее можно списать и на погрешность, но кое-какие закономерности в результатах просматриваются. Рост производительности при повышении частоты памяти хоть и мизерный, но присутствует. Режим Ganged в мультипроцессорном тесте приводит к небольшому снижению итогового балла.


При ознакомлении с результатами в этом тесте нас ждет сюрприз. По неизвестным причинам на материнской плате Socket AM2+ они оказываются выше, чем на Socket AM3.


Но по данным именно процессорного теста все выглядит уже вполне адекватно и с памятью DDR3 процессоры демонстрируют лучшие результаты. На Phenom II X4 только DDR3-1600 обгоняет DDR2-1066 (5-5-5-18), на Phenom II X3 даже с DDR3-1333 результат не уступает DDR2-1066.

The Last Remnant

Использовался специальный игровой бенчмарк, который прогонялся по три раза.


Данная игра вполне неплохо реагирует на изменение пропускной способности ОЗУ. Разница между самой «медленной» конфигурацией DDR2 и самой «быстрой» конфигурацией DDR3 достигает 8%. По различному проявляется влияние режима Ganged: на платформе AM2+ с памятью DDR2 мы видим повышение результата, а на платформе AM3 уже наблюдается падение производительности. Очень положительно сказывается на производительности повышение частоты блока NB, и старший процессор выигрывает от этого больше чем младший.

Far Cry 2

Версия игры 1.03. Все настройки установлены в значение Medium, в том числе значения раздела Performance (физика, огонь, деревья). Тест включал два цикла по 7 прогонов демо-записи Ranch Small.


В игре Far Cry 2 мы снова видим неплохую зависимость от подсистемы памяти. Так, без какого либо разгона самого процессора, лишь поднимая частоту блока NB и используя быструю DDR3-1600, мы добиваемся выигрыша в 13% (на Phenom II X4) над самым «медленным» режимом с DDR2-800. Да и в целом, как видно по результатам, DDR2-800 немного «ограничивает» потенциал обоих процессоров. Что до режима Ganged, то в нем производительность снижается.

Версия игры 1.2. Тесты проводились в Crysis Benchmark Tool, прогонялся стандартный CPU-benchmark (bat-файл на запуск которого находится в папке bin 64). Эта демо-запись включает сцену, в которой герой из гранатомета разносит несколько домиков, и в ней создается максимально возможная нагрузка на центральный процессор из-за обилия осколков и прочих активных объектов. Тест включал пять циклов по 4 прогона тестовой «демки» в каждом.


И в этой игре проявляется довольно неплохая зависимость от подсистемы памяти. И вновь старший процессор выигрывает больше от повышения частоты памяти, чем младший. У первого разница между DDR2-800 и DDR3-1600 составляет 10%, у второго разница между DDR2-800 и DDR3-1333 чуть более 4%. DDR2-1066 с задержками 5-5-5-18 проигрывает даже DDR3-1333 (7-7-7-20). В работе контроллера памяти в режиме Ganged результаты чуть снижаются, ну а повышение частоты NB как обычно повышает производительность.

Еще отметим, что в этом тесте на старшем процессоре практически отсутствует разница между DDR3-1333 и DDR3-1600, что свидетельствует о том, что и при частоте 1333 МГц (и задержках 7-7-7-20) память уже практически не ограничивает потенциал Phenom II X4 955 BE в этом приложении.

Выводы

Настало время подвести итоги нашего тестирования. В целом, можно отметить, что разница между новой платформой AM3 и более старой AM2+ не очень то и значительна. В некоторых тестах эти различия вообще стремятся к нулю, но в некоторых приложениях (особенно в играх и архиваторах) наблюдается весомое преимущество процессоров Phenom II в связке с памятью DDR3.

Также во многом эти различия обусловлены и мощностью самого процессора, в чем мы убедились на примере Phenom II X3 720 и Phenom II X4 955, ведь в процентном соотношении больший прирост от использования более скоростных модулей памяти наблюдался именно у второго процессора. Так что для младших двух- и трехъядерных моделей Phenom II и Athlon II проблема выбора памяти менее актуальна, поскольку на конечной производительности это скажется незначительно. Однако мы бы все равно рекомендовали использовать минимум DDR2-1066 и при нормальных таймингах, поскольку в некоторых приложениях медленная DDR2-800 немного «ограничивает» потенциал даже процессоров среднего класса.

В некоторых приложениях DDR2-1066 (5-5-5-18) оказывается быстрее DDR3-1333 (7-7-7-20), но чаще они или идут наравне или преимущество остается все же за DDR3. Причем эта закономерность проявляется на всех процессорах, просто на более мощных она будет ярче выражена. Так что для старших CPU более целесообразно, конечно же, использовать платформу Socket AM3 в сочетании с высокоскоростными модулями памяти DDR3.

Относительно режима работы Ganged можно сказать, что в большинстве тестов он приводит к падению производительности, а там где его активация сказывается положительным образом, выигрыш от этого невелик. Поэтому не случайно по умолчанию платы работают в более эффективном режиме Unganged. Еще интересно и то, что на разных платформах активация этого режима по-разному сказывается на итоговой производительности. В частности в игре The Last Remnant в режиме Ganged с DDR2 мы видим повышение результата, а с DDR3 уже падение. Это, впрочем, лишний раз подтверждает, что для современной многоядерной системы на базе Socket AM3 этот режим противопоказан, а для Socket AM2+ этот параметр уже менее принципиален. Кстати, в режиме Ganged понижается еще и стабильность работы подсистемы памяти — приходилось во время тестирования незначительно повышать напряжение на NB и оперативной памяти.

Необходимо отметить и пользу повышения частоты встроенного в процессор северного моста, вместе с которым мы повышаем и частоту кэша L3. Даже в номинальных режимах работы рассмотренных процессоров это сказывается самым положительным образом. Прирост от разгона NB на 400 МГц иногда оказывается не менее эффективным, чем переход от DDR2 к DDR3. В процентном отношении это увеличение производительности было больше на старшем процессоре, и логично предположить, что с повышением частоты CPU прирост от разгона NB будет еще более актуален. Так что при разгоне Phenom II данный параметр будет играть немаловажную роль, и для того, чтобы полностью раскрыть потенциал процессоров AMD при повышении их частоты необходимо заодно и повышать частоту NB. Но это требует и увеличения соответствующего напряжения, что влечет повышение общей температуры процессора, да и не всегда при разгоне процессора можно достичь таких же высоких частот NB, как при его номинальной работе. Впрочем, то, как на практике это отражается на разгоне процессоров, мы рассмотрим уже в одном из следующих материалов…

Благодарим следующие компании за предоставленное тестовое оборудование:

  • AMD за процессор Phenom II X4 955 BE;
  • MSI за платы 790XT-G45, 790FX-GD70 и процессор Phenom II X3 720 BE;
  • Спецвузавтоматика за память Kingston KHX1600C9D3K2/4G;
  • за жесткий диск WD3200AAKS.

Современный рынок предлагает несчётное множество процессоров для настольных компьютеров. Пестрят изобилием выбора абсолютно все классы, начиная от Low-end и заканчивая Hi-end. Собственно говоря, в последнем наблюдаются наиболее жаркие состязания за первенство. Извечные конкурентные компании Intel и AMD «изворачиваются», как могут. Первая смогла представить доступный Nehalem в виде Intel Core i5-750 , однако только при условии покупки соответствующей материнской платы ориентированной под платформу Socket LGA 1156. Вторая пока особо не разглашает свои «новинки», но наращивает частоты в уже существующих модельных рядах. Сегодня мы рассмотрим самое производительное на данный момент предложение от компании AMD: процессор Phenom II X4 965 Black Edition, а также оценим его перспективность в сравнении с более доступными моделями.

Внешний вид упаковки

Категорично чёрная коробка - напоминание о принадлежности к классу «Black Edition», информационный синий квадрат, логотип «AMD Phenom II» в центре, вот собственно и вся раскраска. И нет ничего удивительного в отсутствии реклам максимальной вычислительной мощности данной модели, ведь «просто так» такие процессоры не покупают. Предполагается, что покупатель знает, «что» и «зачем» он приобретает.

Информационный синий квадрат скромно сообщает, что четырёхъядерный процессор работает на тактовой частоте 3,4 ГГц, имеет 8,0 МБ кэш-памяти и ориентирован под платформу Socket AM3. Не так-то и много информации, но уже и не мало. Хотелось обратить внимание, что 3,4 ГГц на сегодняшний день довольно редкая и высокая тактовая частота для серийного процессора. Конкурирующая компания Intel свои топовые четырёхъядерные процессоры «награждает» частотой всего-то 3,2 ГГц.

Как всегда, упаковка процессора подразумевает смотровое окошко, через которое можно увидеть теплораспределительную крышку процессора для сравнения характеристик, указанных в синем информационном квадрате, и расшифровывая специальный буквенно-цифирный код, который поможет узнать и степпинг процессора.

Комплектация:

  • Процессор Phenom II X4 965 Black Edition;
  • Кулер AV-Z7UH40Q001-1709;
  • Инструкция по установке и гарантийные обязательства на три года;
  • Наклейка на корпус.

Комплектные кулеры, поставляемые с процессорами линейки AMD Phenom II X4 9** имеют максимальное количество применённых новейших технологий теплоотвода, о чём уже неоднократно говорилось в обзорах и AMD Phenom II X4 945 для Socket AM3 . Довольно большая медная пластина, которая установлена в основании кулера, принимает от него избыточное тепло. Четыре тепловые трубки и рёбра радиатора, припаянные к основанию, отбирают принятое тепло и уже отдают его проходящему потоку воздуха, который создаёт высокооборотистый вентилятор. Максимально большой контакт тепловых трубок с рёбрами радиатора, усиленный припоем, равномерно распределяет избыточное тепло по тем же самым алюминиевым рёбрам.

Вентилятор комплектного кулера (AV-Z7UH40Q001-1709) имеет некоторую изюминку. В него встроен термодатчик, который независимо от задания материнской платы сам в состоянии изменять скорость крыльчатки в зависимости от температуры проходящего через него воздуха. Хотя в такой специфической системе управления есть недостаток. В режиме максимальной нагрузки, в жаркое время года скорость вращения крыльчатки может достигать 5600 об/мин (!). При этом создаётся не только шум рассекаемого лопастями воздуха, но и слышен гул самого двигателя. Находясь на расстоянии около двух метров от системного блока, в котором «трудится такой монстр» ни о каком акустическом комфорте речь не идёт.

Теплораспределительная крышка процессора несёт маркировку HDZ965FBK4DGI, которую можно расшифровать примерно как:

  • HD – процессор AMD архитектуры K10,5 для рабочих станций;
  • Z – процессор со свободным множителем;
  • 965 – модельным номер, указывающий на семейство (первая цифра) и положение модели внутри семейства (остальные цифры - чем больше, тем выше рабочая тактовая частота);
  • FB – тепловой пакет процессора до 125 Вт при напряжении питания в диапазоне 0,875 – 1,5 В;
  • K – упакован процессор в корпус 938 pin OµPGA (Socket AM3);
  • 4 – общее количество активных ядер и, соответственно, объем кэш-памяти второго уровня 4х 512 КБ;
  • DGI - ядро Deneb (45 нм) степпинга C2.

Интерфейсная сторона процессора имеет 938-контактную упаковку. Это разъем Socket AM3. Напомним, что он обратно совместим с разъемом Socket AM2+, а встроенный в процессор контроллер памяти может работать с памятью типа DDR2 и DDR3.

Спецификация

Маркировка

Процессорный разъем

Тактовая частота, МГц

Множитель

17 (стартовый)

Частота шины HT, МГц

Объем кэш-памяти L1, КБ

Объем кэш-памяти L2, КБ

Объем кэш-памяти L3, КБ

Количество ядер

Поддержка инструкций

MMX, 3DNow!, SSE, SSE2, SSE3, SSE4A, x86-64

Напряжение питания, В

Тепловой пакет, Вт

Критическая температура, °C

Техпроцесс, нм

Поддержка технологий

Cool’n’Quiet 3.0
Enhanced Virus Protection
Virtualization Technology
Core C1 and C1E states
Package S0, S1, S3, S4 and S5 states

Изучив спецификацию, можно констатировать факт, что рассматриваемый нами сегодня процессор ничем не отличается от ранее «топового» AMD Phenom II X4 955 Black Edition за исключением поднятого на единицу стартового множителя. Стоит сходу заметить, что возможность выставить максимальный множитель у обоих процессоров одинаковая. Но будем надеяться, что, всё же, у более дорогой модели разгонный потенциал окажется посолиднее.

Распределение кэш-памяти также не изменилось в сравнении с аналогичными моделями линейки AMD Phenom II X4 9**.

Как говорилось раньше в обзорах аналогичных процессоров, встроенный контроллер памяти ограничивает её частоту на отметке 1333 МГц (для памяти типа DDR3). Применение заведомо более быстрой памяти бесполезно. Хотя в режиме разгона можно достичь гораздо более высоких частот.

Подбор оппонентов для тестирования

  • Выражаем благодарность фирме ООО ПФ Сервис (г. Днепропетровск) за предоставленный для тестирования процессор.

    Выражаем благодарность компаниям ASUS , GIGABYTE , Kingston , Noctua , Sea Sonic , Scythe , VIZO за предоставленное для тестового стенда оборудование.

    Статья прочитана 292202 раз(а)

    Подписаться на наши каналы

ВведениеЕсли вы регулярно знакомитесь с материалами, публикуемыми на нашем сайте, то наверняка успели заметить, что число обзоров двухъядерных процессоров, вышедших в течение последнего года, можно пересчитать по пальцам одной руки. И этот факт совершенно не означает нашей ярой приверженности концепции многоядерности. Напротив, при каждом удобном случае мы не устаём напоминать о том, что на современном этапе развития рынка программного обеспечения, процессоры, располагающие двумя вычислительными ядрами, вполне способны демонстрировать более чем достаточный уровень производительности. Ослабление же внимания к «двухъядерному» сегменту рынка объясняется тем, что его развитие практически полностью прекратилось, так как ведущие производители x86-процессоров для настольных компьютеров сосредотачивают свои основные усилия на разработке и продвижении четырёхъядерных моделей. Вся же активность, связанная с двухъядерными процессорами уже давно, фактически, заключается либо в небольшом увеличении тактовых частот имеющихся семейств продуктов, либо в снижении их цен.

Впрочем, небольшие количественные изменения этого рода в итоге дали и качественный результат, который мы смогли обнаружить в недавно вышедшей статье «». Как оказалось, двухъядерные предложения AMD перестали быть серьёзными конкурентами процессорам Intel Core 2 Duo, довольствуясь лишь соперничеством с недорогими моделями Intel Celeron. Наше тестирование показало, что даже относительно новые Athlon X2 серии 7000 не могут рассматриваться в качестве достойной альтернативы хотя бы процессорам Pentium, основанным на ядре Wolfdale-2M, не говоря уже о более «серьёзных» предложениях Intel.

Тем не менее, переживаемый в настоящее время компанией AMD ренессанс, связанный с появлением и распространением новых ядер, производимых по 45-нм технологическому процессу, вносит в эту мрачную картину определённые коррективы. Так, на поверку, вполне конкурентоспособными оказались трёхъядерные процессоры Phenom II X3 700 , которые с определёнными допущениями можно рассматривать как некую альтернативу интеловским Core 2 Duo. Однако, несомненно, для полноценного присутствия в средней части рынка компании AMD всё же не хватает нормальных двухъядерников, способных обеспечить современный уровень быстродействия. Понимают это и специалисты компании AMD, поэтому выпуск обновлённых двухъядерных процессоров, основанных на новейших 45-нм ядрах, выступал для компании одним из основных приоритетов.

И вот, наконец, сегодня компания AMD ликвидирует образовавшуюся брешь в структуре собственных предложений, выпуская столь ожидаемые двухъядерные процессоры, чья «официальная» (то есть рекомендованная производителем) цена находится в промежутке от 70 до 120 долларов, на который приходится один из пиков покупательского спроса. Причём, AMD решила преподнести своим поклонниками неожиданный сюрприз и подготовила сразу два двухъядерных семейства нового поколения: Phenom II X2 и Athlon II X2. Процессоры первого семейства представляют собой урезанные производные от процессоров Phenom II с большим количеством ядер, в то время как Athlon II X2 – это в некотором роде самостоятельный продукт, хотя и похожий по микроархитектуре и другим характеристикам на Phenom II. В этом материале мы познакомимся с процессорами обоих семейств, сравним их между собой, а также посмотрим, можно ли говорить о том, что в структуре предложений AMD появились двухъядерные процессоры, способные как-то изменить ситуацию на рынке.

AMD Phenom II X2

Всё разношёрстное множество процессоров Phenom II целиком являет собой яркий пример унификации. Рассматриваемое сегодня семейство Phenom II X2 500 – это уже четвёртый вариант CPU, использующий тот же самый полупроводниковый кристалл Deneb, впервые нашедший применение в процессорах Phenom II X4 900. Причём, Phenom II X2 – это, на первый взгляд, один из самых иррациональных вариантов применения исходного четырёхъядерного кристалла, ведь в данном случае отключению подвергается целых два ядра. Впрочем, с другой стороны оставшийся двухъядерный CPU с кэшем третьего уровня являет собой и удивительный пример рачительности: благодаря Phenom II X2 AMD получает возможность пускать в дело и кристаллы с множественными бракованными блоками.

Получавшийся «обрезок» получил кодовое имя Callisto. На генеалогическом дереве Phenom II он занимает крайнее положение: ещё более урезанных вариантов своего нового четырёхъядерного кристалла, выпускаемого по 45 нм технологии, в планах у AMD нет.

Нетрудно догадаться, что ввиду использования одного и того же полупроводникового кристалла, новые Phenom II X2 500 унаследовали основные свойства от своих старших собратьев. Это в первую очередь касается их совместимости с Socket AM3 материнскими платами и возможности использования скоростной DDR3 памяти. Естественно, как и для всех остальных Phenom II, возможность установки новых двухъядерных процессоров в Socket AM2/AM2+ платы также сохранена. Иными словами, новые двухъядерные Phenom II X2 вполне могут быть применены как для создания новых систем, так и для усовершенствования старых.



При этом, несмотря на то, что по сути Phenom II X2 является для AMD побочным продуктом, компания отнеслась к количественным характеристикам этого семейства вполне ответственно. Так, вместе с тем, что эти процессоры обладают L3 кэшем объёмом 6 Мбайт (таким же по размеру, как и представители семейства Phenom II X4 900), их тактовые частоты находятся на достаточно высоком уровне. Старший процессор Phenom II X2 550 работает на частоте 3,1 ГГц, а это всего лишь на 100 МГц меньше частоты флагмана всей эскадрильи Phenom II, процессора Phenom II X4 955. При этом расчётное максимальное тепловыделение представителей серии Phenom II X2 500 за счёт меньшего количества активных ядер оказывается ниже расчётного тепловыделения всех остальных трёхъядерных и четырёхъядерных Phenom II (за исключением энергетически эффективных моделей) – оно составляет 80 Вт.

Дабы сформировать чёткую и полную картину положения двухъядерных новинок в рядах других процессоров множества Phenom II, мы составили таблицу с их основными характеристиками.



Для тестирования компания AMD прислала нам старшую модель двухъядерного процессора нового поколения, Phenom II X2 550. Её конкретные характеристики можно почерпнуть из скриншота диагностической программы CPU-Z.


Утилита, как видим, показывает, что кодовое имя нашего процессора – Deneb, что, безусловно, по сути неправильным не является. Но в то же время следует иметь в виду, что использованный в основе Phenom II X2 550 четырёхъядерный кристалл с двумя выключенными вычислительными ядрами сама компания AMD называет собственным кодовым именем Callisto.

Также, по скриншоту видно, что процессор Phenom II X2 550 принадлежит к классу Black Edition, то есть обладает незафиксированным множителем, что означает возможность его элементарного и беспрепятственного разгона. Учитывая стоимость этого процессора, которая, по официальным данным, должна составить составлять 102 доллара США, Phenom II X2 550 вполне может стать хорошим вариантом для недорогих оверклокерских платформ. Тем более что новые процессоры AMD, основанные на 45 нм ядре, обладают достаточно неплохим частотным потенциалом.

AMD Phenom II X2 550 – не единственный процессор в серии Phenom II X2 500, выходящий сегодня. Одновременно с ним AMD выпускает и 3-гигагерцовый Phenom II X2 545, который также как и его брат-близнец, будет противостоять процессорам Intel Core 2 Duo E7000. Однако прежде чем посмотреть на результаты сравнительных тестов, давайте познакомимся и с другой двухъядерной новинкой, которую подготовила сегодня компания AMD.

AMD Athlon II X2

Судя по характеристикам, процессоры серии Phenom II X2 500 должны быть очень неплохим предложением в ценовой категории «около $100». Однако выпуск таких процессоров – для AMD удовольствие очень дорогое. Площадь кристалла этого CPU может сравниться с площадью кристалла, используемого во флагманских процессорах Intel семейства Core i7, а значит, что их себестоимость производства Phenom II X2 500 сравнительно высока. Отсюда очевидно, что своим появлением на свет серия Phenom II X2 500 обязана лишь желанию AMD с пользой пристраивать бракованные четырёхъядерные кристаллы Deneb. Жертвовать же полноценными четырёхъядерными кристаллами для двухъядерных процессоров AMD, скорее всего, если и станет, то с большой неохотой. Проще говоря, возможности AMD по поставке Phenom II X2 500 на рынок весьма ограничены, и эти процессоры вряд ли будут способны в полной мере решить все проблемы компании с двухъядерными процессорами средней ценовой категории.

Поэтому совершенно неудивительно, что одновременно с Phenom II X2 AMD представляет и ещё один процессор – Athlon II X2, который, хотя и похож на него по характеристикам, но основывается на куда более дешёвом в производстве ядре Regor. Основные отличия Regor от Deneb лежат на поверхности: этот полупроводниковый кристалл содержит лишь пару вычислительных ядер, а кроме того, для ещё большего сокращения площади и снижения себестоимости, лишён и кэш-памяти третьего уровня. Архитектурно же вычислительные ядра Athlon II X2 не отличаются от вычислительных ядер процессоров Phenom II X2: они используют абсолютно идентичную микроархитектуру K10 (Stars) не отличающуюся ни в каких деталях. Единственное сделанное инженерами AMD изменение – это увеличение объёма принадлежащего каждому вычислительному ядру L2 кэша с 512 Кбайт до 1024 Кбайт, что, очевидно, должно как-то компенсировать отсутствие в ядре Regor общей кэш-памяти третьего уровня.

В итоге, общая площадь полупроводникового кристалла Regor составляет 117,5 кв.мм, что более чем вдвое меньше площади ядра Deneb. И эта величина примерно соответствует площади ядер двухъядерных процессоров Intel, относящихся к семейству Core 2 Duo E8000, которые также производятся с использованием 45-нм технологического процесса. Впрочем, необходимо иметь в виду, что при этом процессоры Intel значительно «сложнее»: они состоят из примерно 410 млн. транзисторов, в то время как количество транзисторов в полупроводниковом кристалле Regor достигает лишь 234 млн. Именно поэтому современные двухъядерные процессоры Intel, основанные на ядре Wolfdale, располагают 6-мегабайтной кэш-памятью второго уровня, в то время как аналогичные по площади ядра Athlon II X2 снабжается лишь 2 Мбайтами L2 кэш-памяти в сумме.



Специально сконструированный инженерами AMD полупроводниковый кристалл с двухъядерным дизайном Regor помимо всего прочего позволил опустить и планку тепловыделения и энергопотребления. Двухъядерные Phenom II X2 500, базирующиеся на ядре Deneb, обладают расчётным тепловыделением 80 Вт, а характеристика TDP процессоров Athlon II X2, построенных на ядре Regor, снижена до 65 Вт. Поэтому AMD надеется, что в результате внедрения 45 нм техпроцесса при производстве двухъядерных процессоров, они смогут конкурировать с интеловскими предложениями не только с точки зрения производительности, но и по экономичности.

Вместе с этим компания AMD хочет представить семейство Athlon II X2 таким образом, как будто это – более простой и дешёвый, нежели Phenom II X2 500, процессор. Именно поэтому тактовые частоты этого семейства процессоров будут ниже, как, впрочем, и цены: например, старшая модель Athlon II X2 250 имеет официальную стоимость 87 долларов – на 15 долларов дешевле Phenom II X2 550. Однако, глядя на различия между этими процессорами, невозможно однозначно сказать, что Athlon II X2 200 хоть в чём-то качественно уступает Phenom II X2 500. Для большей наглядности давайте сопоставим характеристики новых двухъядерников: Phenom II X2 серии 500 и Athlon II X2 200.



По нашему мнению, и то, и другое семейство процессоров представляет собой двухъядерные решения одного класса. А то, что Athlon II X2 и Phenom II X2 одинаково совместимы с новой платформой Socket AM3 делает все эти недорогие процессоры отличным локомотивом для продвижения данной платформы на рынок, интерес к которой, на фоне снижения цен на DDR3 SDRAM, безусловно, будет только расти. Тем более что в настоящее время на прилавках магазинов появляются недорогие Socket AM3 материнские платы, основанные на наборе логики AMD 770.

Для исследования возможностей процессоров Athlon II X2 200 сегодня мы воспользуемся старшим представителем этого модельного ряда, 3-гигагерцовым Athlon II X2 250. Характеристики этого конкретного процессора видны на приведённом ниже скриншоте CPU-Z.


Используемая нами диагностическая утилита пока что плохо знакома с новым процессорным ядром Regor. Тем не менее, все параметры она отображает верно, и уже сейчас можно обратить внимание на то, что степпинг ядра процессора Athlon II X2 отличается от степпинга ядра Callisto, используемого в Phenom II X2, что ещё раз подчёркивает их различное происхождение.

Кэш-память AMD Athlon II X2

Учитывая, что единственным принципиальным нововведением, сделанным в ядрах процессоров семейства Athlon II X2, оказалось изменение схемы кэш-памяти, мы решили уделить ей немного дополнительного внимания. Как мы выяснили в нашем обзоре первых процессоров Phenom II , при внедрении технологического процесса с нормами производства 45 нм инженеры AMD не стали вносить никаких изменений в алгоритмы работы кэша. В результате, кэш-память процессоров Phenom II, основанных на ядре Deneb, работает с абсолютно той же скоростью, что и кэш-память процессоров Phenom первого поколения. Однако ядро Regor может таить в себе некоторые сюрпризы, ведь в нём кэш второго уровня вдвое увеличился в размере.


Phenom II X2 (Callisto)


Athlon II X2 (Regor)


Впрочем, несмотря на это, ассоциативность L2 кэша осталась той же, что и была: Athlon II X2, как и Phenom II X2, использует кэш-память второго уровня с 16-канальной ассоциативностью. Это даёт повод ожидать примерное равенство в скорости работы L2 кэша у процессоров Athlon II X2 и Phenom II X2. Преимущество же более вместительного L2 кэша Athlon II X2 при этом будет состоять в более высокой вероятности попадания в него данных.

На практике это выглядит следующим образом.



Phenom II X2 545 (3.0 GHz). Заметьте, Everest неправильно определяет кодовое имя этого процессора.



Athlon II X2 250 (3.0 GHz)


Как и ожидалось, при реальных измерениях мы получили примерно одинаковые скорости работы L2-кэша как у процессоров с ядром Deneb, так и у новинок с ядром Regor. Подсистема памяти Athlon II X2 при этом оказалась чуть-чуть быстрее, что вполне объяснимо отсутствием накладных расходов, связанных с необходимостью поиска данных в кэш-памяти третьего уровня.

Описание тестовых систем

Для полноценного тестирования новых двухъядерных процессоров Callisto и Regor мы решили сравнить их не только с конкурирующими предложениями Intel, но и с предшественниками, предлагаемыми компанией AMD, хоть они и относятся к несколько иному ценовому сегменту. Поэтому при подготовке данного материала нам пришлось использовать три разные платформы.

1. Платформа Socket AM3:

Процессоры:

AMD Phenom II X3 710 (Heka, 2,6 ГГц, 3 x 512 Кбайт L2, 6 Мбайт L3);
AMD Phenom II X2 550 (Callisto, 3,1 ГГц, 2 x 512 Кбайт L2, 6 Мбайт L3);
AMD Athlon II X2 250 (Regor, 3,9 ГГц, 2 x 1024 Кбайт L2).


Материнская плата: Gigabyte MA790FXT-UD5P (Socket AM3, AMD 790FX + SB750, DDR3 SDRAM).
Память: Mushkin 996601 4GB XP3-12800 (2 x 2 Гбайта, DDR3-1600 SDRAM, 7-7-7-20).

2. Платформа Socket AM2:

Процессоры:

AMD Athlon X2 7850 (Kuma, 2,8 ГГц, 2 x 512 Кбайт L2, 2 Мбайта L3);
AMD Athlon X2 6000 (Brisbane, 3,1 ГГц, 2 x 512 Кбайт L2);
AMD Athlon X2 6000 (Windsor, 3,0 ГГц, 2 x 1024 Кбайт L2).


Gigabyte MA790GP-DS4H (Socket AM2+, AMD 790GX + SB750, DDR2 SDRAM).

3. Платформа LGA775:

Процессоры:

Intel Core 2 Duo E7500 (Wolfdale, 2,93 ГГц, 1067 МГц FSB, 3 Мбайта L2);
Intel Core 2 Duo E7400 (Wolfdale, 2,8 ГГц, 1067 МГц FSB, 3 Мбайта L2);
Intel Pentium E6300 (Wolfdale-2M, 2,8 ГГц, 1067 МГц FSB, 2 Мбайта L2);
Intel Pentium E5400 (Wolfdale-2M, 2,7 ГГц, 800 МГц FSB, 2 Мбайта L2).


Материнские платы:

ASUS P5Q Pro (LGA775, Intel P45 Express, DDR2 SDRAM);
ASUS P5Q3 (LGA775, Intel P45 Express, DDR3 SDRAM).


Память: GEIL GX24GB8500C5UDC (2 x 2 Гбайта, DDR2-1067 SDRAM, 5-5-5-15).

Помимо перечисленных комплектующих, все тестируемые платформы включали один и тот же общий набор аппаратных и программных компонентов:

Графическая карта: ATI Radeon HD 4890.
Жёсткий диск: Western Digital WD1500AHFD.
Операционная система: Microsoft Windows Vista x64 SP1.
Драйверы:

Intel Chipset Software Installation Utility 9.1.0.1007;
ATI Catalyst 9.5 Display Driver.

Необходимо отметить, что в рамках данного исследования мы сочли возможным использование полноценной Socket AM3 платформы, оснащённой DDR3 SDRAM, для тестирования сравнительно недорогих двухъядерных процессоров AMD. Такое решение объясняется значительно понизившимися ценами на память этого типа и её активное распространение на рынке.

При этом LGA775 процессоры мы продолжаем тестировать в системе с DDR2 SDRAM, так как использование более высокочастотной памяти с CPU семейств Core 2 Duo и Pentium, чья частота шины не превосходит 1067 МГц, невозможно ввиду ограничений, заложенных в применяемые с ними наборы логики. Тем не менее, при разгоне LGA775 процессоров, где использование памяти, работающей на более высоких, чем 1067 МГц частотах становится возможным, мы заменяли указанную выше плату ASUS P5Q Pro на аналогичную ASUS P5Q3, но, оснащённую слотами для DDR3 SDRAM.

Эволюция двухъядерных процессоров AMD

Двухъядерные процессоры AMD имеют богатую историю: первые CPU под торговой маркой Athlon X2 увидели свет ещё в 2005 году. И, как это ни удивительно, многие подвиды двухъядерных процессоров AMD, выпущенные с того времени, остаются интересны до сих пор и не уходят с прилавков магазинов. Говоря о таких возрастных, но актуальных моделях, мы, прежде всего, имеем в виду, что среди продающихся сегодня процессоров Athlon X2, предназначенных для использования в Socket AM2 материнских платах, встречаются как представители серий 5000 и 6000 со старой микроархитектурой K8, выпущенные с использованием технологических процессов с нормами 90 и 65 нм; так и Athlon X2 7000, основанные на 65-нм ядрах с микроархитектурой K10. Теперь же к ним добавляются процессоры Athlon II X2 и Phenom II X2 с современными 45-нм ядрами, но это совершенно не означает, что старые Athlon X2 в одночасье исчезнут из числа розничных предложений. Двухъядерные CPU, основанные на микроархитектуре K8, продолжают оставаться и по сей день даже в официальном прайс-листе.

Поэтому, проследить эволюционное развитие двухъядерных процессоров AMD очень несложно: большинство представителей разных поколений Athlon X2 всё ещё не стали частью истории. Следующая таблица содержит характеристики основных ядер, применяющихся в CPU, совместимых с актуальным в настоящее время процессорным гнездом Socket AM2 .



Что же принесло компании AMD такое многоступенчатое совершенствование своих продуктов, являющихся, по сути, частью одной и той же платформы? Намного ли быстрее проверенных временем двухъядерных процессоров с 90 и 65-нм ядрами и микроархитектурой K8 станут новые Athlon II X2 и Phenom II X2? Задавшись этим вопросом, мы протестировали все пять перечисленных выше разновидностей процессоров, принудительно установив им одну и ту же тактовую частоту – 3,0 ГГц.





















Прогресс не стоит на месте. С каждым новым ядром (за исключением одного - Brisbane) AMD последовательно улучшала быстродействие собственных процессоров. И всё это привело к тому, что сегодняшняя вершина эволюции – процессоры Phenom II X2 – оказываются примерно на 25 % быстрее первых Athlon X2 в Socket AM2 исполнении, работающих на той же самой тактовой частоте. При этом наиболее значительный прирост скорости произошёл при внедрении микроархитектуры K10(Stars), однако и новинки с 45-нм ядрами не ударяют в грязь лицом. При функционировании на одной и той же тактовой частоте новый Athlon II X2 способен обогнать Athlon X2 серии 7000 на ядре Kuma в среднем почти на 7 %, а Phenom II X2 наращивает величину этого превосходства до 11 %.

Иными словами, появление новых двухъядерных процессоров, выпускаемых по 45-нм технологии, не только открывает перед AMD пространство для дальнейшего увеличения тактовых частот, но и поднимает планку производительности процессоров среднего уровня благодаря усовершенствованиям в микроархитектуре и увеличению вместимости кэш-памяти.

Phenom II X2 против Athlon II X2

Несмотря на то, что глубинные причины появления двух похожих друг на друга семейств двухъядерных процессоров, в общем-то, понятны, целесообразность их одновременного запуска вызывает некоторые вопросы. Ответить на них может помочь сопоставление между собой результатов тестирования Phenom II X2 и Athlon II X2, работающих в идентичных платформах и на одной и той же тактовой частоте – 3,0 ГГц.



В целом, ядро Callisto, обладающее кэш-памятью третьего уровня, показало более высокий результат в подавляющем большинстве тестов. И это полностью соответствует тому, как позиционирует друг относительно друга новые семейства двухъядерных процессоров их производитель: Phenom II X2 будет обходиться потенциальным покупателям примерно на 7-10 % дороже, чем равночастотный Athlon II X2.

Кроме того, достаточно любопытным выглядит и тот факт, что наибольший положительный эффект кэш-память третьего уровня процессора Phenom II X2 даёт в играх и при офисной работе. Именно в приложениях такого характера имеет смысл использовать процессоры серии Phenom II X2 500 в первую очередь. При обработке же медиаконтента, рендеринге и в других счётных задачах наличие L3 кэш-памяти обеспечивает куда меньший выигрыш в быстродействии, поэтому в этих случаях более дешёвые процессоры семейства Athlon II X2 способны похвастать более выгодным сочетанием цены и производительности.

Cреднее же преимущество Phenom II X2 над младшим собратом, работающим на той же самой тактовой частоте, составляет не очень убедительные 5 %. А это означает, что Athlon II X2, имеющий хотя бы на 200 МГц более высокую частоту, уже будет обгонять процессор из более дорогого семейства Phenom II X2. Поэтому, для сохранения стройности в позиционировании продуктов компании AMD придётся тщательно следить за «чистотой рядов» своих новых двухъядерных предложений, и не допускать слишком быстрого роста штатных частот процессоров в модельном ряду Athlon II X2.

Производительность

Общая производительность















С точки зрения теста SYSmark 2007, который оценивает производительность систем при обычной работе, новые процессоры AMD выглядят весьма и весьма заманчиво. Так, Athlon II X2 250 обходит интеловскую новинку в линейке Pentium с процессорным номером E6300, а Phenom II X2 550 на равных борется даже с Core 2 Duo E7500. То есть, и в том и в другом случае новые процессоры AMD уверенно обходят по быстродействию конкурирующие предложения Intel, обладающие более высокой стоимостью. А в свете нашего недавнего сравнения процессоров Ahlon X2 и Pentium , можно говорить о том, что благодаря переводу на 45-нм технологический процесс, AMD действительно возвращается на рынок двухъядерных процессоров среднего уровня.

Однако, как можно заметить, новые процессоры Athlon II X2 и Phenom II X2 таят в себе скрытую угрозу для трёхъядерных процессоров AMD. Благодаря высокой тактовой частоте эти двухъядерные модели оказываются быстрее трёхъядерного собрата Phenom II X3 710, который, к слову, позиционируется AMD в качестве процессора более высокого уровня, выступающего конкурентом для серии Intel Core 2 Duo E8000.

Анализ результатов, показанных новинками в различных сценариях SYSmark 2007, позволяет сделать и ещё несколько интересных выводов. Например, соотношение скоростей CPU в подтесте Productivity позволяет говорить о том, что для обычной офисной работы очень важной характеристикой процессора является объём его кэш-памяти, объём которой зачастую оказывается значимее, чем тактовая частота. Зато при работе с видеоконтентом процессор Athlon II X2 250 без L3 кэша показывает даже более высокую скорость, чем Phenom II X2 550. Ещё один интересный случай – это работа в программах 3D моделирования. В таких задачах, несмотря на общее отставание в других сценариях, с сильной стороны показывают себя процессоры Intel, обгоняющие не только двухъядерные новинки AMD, но и даже трёхъядерный CPU нового поколения Phenom II X3 710.

Игровая производительность












Весьма достойно новые двухъядерники AMD выступают и в играх. В особенности это касается Phenom II X2 550, который, благодаря своему L3 кэшу, обгоняет не только Pentium E6300 и Core 2 Duo E7400, но зачастую и Core 2 Duo E7500. Благодаря этому Phenom II X2 550 может считаться превосходным недорогим двухъядерным игровым процессором. Что же касается Athlon II X2 250, то его выступление в игровых приложениях оказалось более бледным, чем у старшего собрата. Однако своего 65 нм предшественника, Athlon X2 7850, он обгоняет значительно – на 13-17 %. Правда, до уровня производительности процессоров Core 2 Duo новый Athlon II X2 250 всё-таки не дотягивает.

Кроме того следует оговориться, что многие современные игры уже достаточно эффективно могут задействовать более чем два процессорных ядра. Именно поэтому трёхъядерный Phenom II X3 710, работающий на частоте 2,6 ГГц, в ряде случаев может предложить лучшую производительность, чем двухъядерные трёхгигагерцовые CPU с аналогичной микроархитектурой.

Производительность при кодировании аудио и видео









Кодирование mp3 аудио в программе Apple iTunes происходит значительно быстрее, если сердцем системы является процессор Intel. Здесь новым двухъядерникам AMD не помогает ни увеличенный кэш, ни микроархитектура K10 (Stars). Зато при кодировании видео и с помощью кодека DivX, и с использованием набирающего популярность x264, процессоры Athlon II X2 и Phenom II X2 способны похвастать относительно неплохой скоростью. Фактически, благодаря наконец-то вышедшей на достойный уровень тактовой частоте, новинки вполне могут поспорить за пальму первенства с представителями серии Core 2 Duo E7000. Кстати, обратите внимание, что задачи кодирования медиаконтента относятся к таким приложениям, которые достаточно индифферентно подходят к объёму и структуре кэш-памяти. А решающее значение здесь играет именно тактовая частота.

Прочие приложения



Мы уже неоднократно обращали внимание на относительно невысокую производительность процессоров AMD при выполнении финального рендеринга, в особенности в популярном пакете 3ds max. С появлением в процессорах AMD новых 45-нм ядер ситуация не изменилась. Старшая из сегодняшних новинок, Phenom II X2 550, только и может похвастать тем, что её быстродействие достигло уровня производительности бюджетного процессора Intel Pentium E5400.О младшем же Athlon II X2 говорить и вообще стыдно. Таким образом, в данном случае конкурировать с Core 2 Duo могут только лишь трёхъядерные процессоры AMD.



Хотя Folding@Home также относится к счётным задачам, результаты новых двухъядерников AMD здесь оказываются немного лучше. Athlon II X2 250 работает наравне с Pentium E5400, а Phenom II X2 550 «дотягивает» по скорости до Core 2 Duo E7400.



При выполнении арифметических расчётов средствами Microsoft Excel новые двухъядерные процессоры AMD продолжают показывать удручающую скорость. Также как и в 3ds max, достойной альтернативой двухъядерным процессорам Intel на сегодняшний день здесь могут стать только трёхъядерные Phenom II X3.



Не лучшим образом складываются дела и в Adobe Photoshop. Как можно заключить из результатов, новые двухъядерные процессоры Phenom II X2 и Athlon II X2 способны решить проблемы AMD с производительностью процессоров среднего уровня далеко не всегда. Сохраняется достаточно большое количество популярных задач, где продукты AMD существенно уступают процессорам Intel, и корни такого положения дел кроются в слабых сторонах микроархитектуры K10 (Stars). Особенно досадно, что на корректировку ситуации в таких приложениях в обозримом будущем надеяться не приходится.



Зато новые процессоры, построенные на ядрах, производимых по технологическому процессу с нормами 45-нм, могут похвастать высокой скоростью компрессии данных в архиваторах. Результаты тестов в WinRAR –яркая тому иллюстрация. Опережает процессоры Core 2 Duo серии E7000 даже Athlon II X2 250. Phenom II X2 550 же по сравнению со своим младшим собратом демонстрирует ещё на 11 % более высокий результат.

Энергопотребление

Предыдущие тестирования показали, что с современными двухъядерными процессорами Intel предложения AMD, основанные на ядрах, производимых по 65-нм технологическому процессу, тягаться не в состоянии. Кажется, выпуск компанией AMD свежих серий CPU Phenom II X2 и Athlon II X2 вполне способен переломить эту ситуацию, ведь эти новые процессоры используют заведомо более экономичные полупроводниковые кристаллы, производимые по 45-нм техпроцессу. В особенности это касается именно Athlon II X2, так как в его основе лежит новое ядро Regor с существенно уменьшенной сложностью. К тому же, для этого процессора и сама компания AMD указывает 65-Вт уровень типичного тепловыделения – такой же, как Intel устанавливает для своих двухъядерных моделей.

Именно поэтому к тестированию энергопотребления новинок компании AMD мы подошли с особым интересом. Приводимые ниже цифры представляют собой полное энергопотребление тестовых платформ в сборе (без монитора) «от розетки». Во время измерений нагрузка на процессоры создавалась 64-битной версией утилиты LinX 0.5.8. Кроме того, для правильной оценки энергопотребления в простое мы активировали все имеющиеся энергосберегающие технологии: C1E, Cool"n"Quiet 3.0 и Enhanced Intel SpeedStep.



Несмотря на все усилия AMD по снижению энергопотребления своих платформ и внедрение технологии Cool"n"Quiet 3.0, которая вводит для 45-нм процессоров дополнительные энергосберегающие состояния, системы, построенные на двухъядерных процессорах Intel, остаются слегка более экономичными.



Примерно такую же картину мы видим и под нагрузкой: процессоры Pentium и Core 2 Duo потребляют явно меньше, чем новые двухъядерные модели компании AMD. К сожалению, с точки зрения соотношения производительности на ватт AMD так и не удалось догнать продукты конкурента. В то же время тенденцию к тому, что энергопотребление процессоров AMD постепенно входит в приемлемые рамки, не заметить невозможно. Потребление Phenom II X2 550, который, к слову, построен на изначально четырёхъядерном полупроводниковом кристалле, оказалось почти на 20 Вт меньше, чем у двухъядерного процессора прошлого поколения, Athlon X2 7850.

Но гораздо сильнее впечатляет потребление платформы с процессором Athlon II X2 250. 65-ваттный тепловой пакет ему присвоен совершенно не зря. Под нагрузкой энергопотребление платформы с этим процессоров всего на 10 Вт превышает аналогичную характеристику системы, построенной на Core 2 Duo E7500. А это значит, что с точки зрения электрических характеристик Athlon II X2 250 вполне можно сопоставлять с Core 2 Duo серии E8000, что для AMD является существенным достижением.

Тем не менее, пока что о каких-то особых успехах компании AMD в деле создания двухъядерных процессоров, эффективных с точки зрения соотношения производительности и энергопотребления говорить не приходится. Впрочем, пока что AMD не исчерпала все свои возможности. В ближайшее время компания собирается представить ещё более экономичные двухъядерные процессоры на базе ядра Regor, отличающиеся от рассматриваемого сегодня Athlon II X2 250 более низким TDP, составляющем 45 Вт.

Разгон

Ещё один аспект практического исследования новых двухъядерных процессоров AMD, который мы не могли оставить в стороне – это разгон. Дело в том, что появление новых ядер, при производстве которых используется технологический процесс с нормами производства 45 нм, вернул к продукции компании AMD интерес энтузиастов. Новые процессоры класса Phenom II стали очень неплохо разгоняться, особенно в сравнении с их предшественниками. И хотя мы знаем, что предел разгона процессоров, основанных на ядре Deneb и его производных при использовании воздушного охлаждения, проходит в районе 3,7-3,8 ГГц, мы попробовали разогнать попавшие в нашу лабораторию экземпляры Phenom II X2 550 и Athlon II X2 550. В качестве кулера в наших экспериментах использовался сравнительно старый, но хорошо себя зарекомендовавший Scythe Mugen.

В первую очередь на тестовый стенд отправился Phenom II X2 550. Заметим, что этот процессор относится к классу Black Edition, а потому его разгон можно выполнять простым изменением коэффициента умножения, который не блокируется производителем.

Честно говоря, мы не ожидали от этого процессора результатов разгона, существенно отличающихся от тех, что мы получали при испытаниях Phenom II X3 и Phenom II X4. Но, тем не менее, этот процессор смог нас немало удивить. Дело в том, что при повышении напряжения питания на 0,15 В выше номинала (до 1,475 В) он смог функционировать при частоте 3,98 ГГц. Стабильность работы в этом режиме подтверждалась тестированием при помощи утилиты LinX, сурово нагружающей процессор исполнением кода Linpack.

Это – очень неожиданный результат, идущий вразрез с теми достижениями, которые нам удавалось получить ранее, при разгоне процессоров AMD на ядрах Deneb и Heka. Однако, к сожалению, радость была недолгой, и как показало дальнейшее тестирование производительности, несмотря на прохождение в этом режиме многих «тяжёлых» процессорных тестов, система оказывалась нестабильной в 3D приложениях, в том числе и играх.

Поэтому, нам пришлось снизить достигнутую частоту и достаточно сильно. Безоговорочно стабильной работой Phenom II X2 550 смог похвастать только при частоте 3,8 ГГц.



Как видно по скриншоту, напряжение питания CPU было увеличено до 1,475 В. Второе процессорное напряжение, относящееся к CPU NB, при разгоне не изменялось, так как даже его повышение не позволяло увеличить частоту встроенного в процессор северного моста выше штатных 2,0 ГГц. Уже при 2,2 ГГц у тестового процессора начинались проблемы с памятью. В итоге, несмотря на многообещающее начало, процессор Phenom II X2 550 повёл себя почти так же, как и его старшие собратья. Очевидно, что использование того же самого полупроводникового кристалла, как и в Phenom II X3 и Phenom II X4, предопределило результаты разгона этого процессора.

Другое дело – Athlon II X2 250. Этот процессор базируется на действительно уникальном полупроводниковом ядре, которое пока что не используется ни в каких иных процессорах. А поскольку это ядро имеет меньшую площадь и меньшее расчётное тепловыделение, от него можно ожидать определённых сюрпризов и в части разгона.

Впрочем, принципиально отличающихся результатов мы не получили. При повышении напряжения на 0,175 В (до 1,5 В) этот процессор смог стабильно работать при частоте 3,9 ГГц – и это оказалось пределом.



Заметим, что, так как Athlon II X2 250 не относится к классу Black Edition, его разгон выполнялся за счёт наращивания частоты тактового генератора, которая в результате достигла 260 МГц. Тут, кстати, на руку нам сыграло отсутствие в процессоре L3 кэша: благодаря этому Athlon II X2 250 достаточно спокойно отнёсся к ускорению встроенного в него северного моста, и нам даже не пришлось снижать соответствующий множитель. Итогом разгона стало увеличение его частоты до 2,6 ГГц, с чем он прекрасно справился с небольшим повышением своего питающего напряжения на 0,1 В.

В итоге, Athlon II X2 250 проявил себя немного более дружественным к разгону процессором, чем его старший собрат, Phenom II X2 550, даже несмотря на то, что к оверклокерской серии «Black Edition» он не относится. Конечно, по результатам исследования первых экземпляров какие-то выводы делать рано, но, похоже, ядро Regor действительно обладает слегка лучшим частотным потенциалом, нежели Deneb и его производные - Heka и Callisto.

Дополнить сказанное мы бы хотели небольшим количеством тестов. Дело в том, что после разгона нам захотелось сравнить производительность Phenom II X2 550 и Athlon II X2 250 между собой, а также и с быстродействием двухъядерных процессоров Intel, также работающих во внештатном режиме. Поэтому, приведённые ниже диаграммы содержат показатели производительности следующих разогнанных процессоров:

AMD Phenom II X2 550 на частоте 3,8 ГГц = 19 х 200 МГц. Память – DDR3 1600 с таймингами 7-7-7-20;
AMD Athlon II X2 250 на частоте 3,9 ГГц = 15 x 260 МГц. Память – DDR3 1386 с таймингами 6-6-6-18;
Intel Pentium E5400 на частоте 4,0 ГГц = 12 x 333 МГц. Память – DDR3 1333 с таймингами 6-6-6-18;
Intel Pentium E7400 на частоте 4,0 ГГц = 10 x 400 МГц. Память – DDR3 1600 с таймингами 7-7-7-20.

Заметим, что частота разгона 4,0 ГГц для процессоров Intel была выбрана как наиболее типичный результат, легко достижимый при воздушном охлаждении.





















Тестирование быстродействия показало, что для использования в разогнанных системах более привлекательными решениями являются двухъядерные процессоры Intel. Даже по сравнению с новыми 45-нм процессорами компании AMD они способны предложить лучший оверклокерский потенциал, более высокие итоговые частоты и, как результат, более быструю работу в разогнанных системах. Впрочем, ситуация для процессоров AMD не так уж и драматична, и зачастую разрыв в скорости платформ оказывается не столь уж и велик. Поэтому, учитывая что разгон – это своего рода лотерея, мы не думаем, что энтузиасты должны поставить крест на новых двухъядерных предложения AMD.

В то же время выбрать из рассмотренных продуктов AMD более оптимальный вариант для разгона достаточно сложно даже после знакомства с тестами. Несмотря на то, что нам удалось повысить частоту Athlon II X2 250 сильнее, чем у Phenom II X2 550, он не смог продемонстрировать однозначно лучший результат. Ведь L3 кэш, имеющийся в Phenom II X2, в ряде случаев оказывается куда более важен, чем высокая тактовая частота.

Включение заблокированных ядер

Думается, нет нужды во всех подробностях напоминать нашим читателям главную приятную неожиданность, сопроводившую выход трёхъядерных процессоров Phenom II X3. Поскольку эти процессоры использовали в своей основе тот же четырёхъядерный полупроводниковый кристалл, что и их собратья семейства Phenom II X4, внезапно оказалось, что существует недокументированная возможность для включения деактивированного ядра и превращения трёхъядерного процессора в четырёхъядерный. Причём, что особенно приятно, эта процедура не требует никаких аппаратных модификаций, достаточно лишь активации опции BIOS, отвечающей за работу технологии Advanced Clock Calibration (ACC). Конечно, четвёртое ядро успешно включается не во всех процессорах, а только в тех, в основе которых используется полноценный полупроводниковый кристалл без брака. К счастью, для первых партий Phenom II X3 вероятность получения «удачного» процессора была достаточно велика, и трюк с увеличением числа ядер в Phenom II X3 существенно поднял популярность этого продукта AMD.

Пройдёт ли подобный номер с двухъядерными процессорами – вопрос, волнующий многих энтузиастов. Давайте разберёмся.

В первую очередь необходимо напомнить, что говорить о включении заблокированных ядер в двухъядерных процессорах имеет смысл только применительно к Phenom II X2. Ведь его младший собрат Athlon II X2 использует изначально двухъядерное ядро, в котором нет никаких заблокированных частей.

Во-вторых, с момента выхода Phenom II X3 в ситуации с реализацией технологии Advanced Clock Calibration в BIOS многих материнских плат кое-что поменялось. Компания AMD не стала спокойно взирать на ликование энтузиастов и попыталась добиться от производителей плат обновления микрокода с тем, чтобы возможности разблокирования были ликвидированы. Но, к счастью, желание AMD удовлетворили далеко не все компании. Например, новые версии BIOS используемой нами в тестах материнской платы Gigabyte MA790FXT-UD5P получили дополнительную опцию, позволяющую выбрать – какой вариант микрокода использовать: новый, без возможности включения ядер, или старый.



Эта опция называется EC Firmware for Advanced Clock Calibration, и её установка в положение Hybrid с последующей активацией Advanced Clock Calibration позволяет включать ядра, как и раньше. Причём, к нашей великой радости, мы можем сообщить, что этот метод работает не только для Phenom II X3, но и для новых Phenom II X2 тоже.

Так, наш экземпляр Phenom II X2 550 позволил активировать оба заблокированных ядра и в мгновение ока превратился в полноценный четырёхъядерный процессор. Который, кстати, тут же удалось разогнать до 3.8 ГГц.



Иными словами, двухъядерный Phenom II X2 550 легко может оказаться высокоскоростным четырехъядерным процессором. Но может и не оказаться – всё здесь, естественно, зависит от того, какой полупроводниковый кристалл лежит в основе конкретного экземпляра: полнофункциональный с заблокированными ядрами, или же всё-таки с браком. Причём, учитывая тот факт, что свои двухъядерные процессоры компания AMD собирается продавать по очень демократичным ценам, вероятность благоприятного исхода разблокирования ядер в двухъядерных моделях представляется нам крайне невысокой. Скорее всего, удачные экземпляры процессоров Phenom II X2 будут попадаться достаточно часто только в первых поставках. Поэтому, если вы всерьёз надеетесь на получение «счастливого» двухъядерника, то с покупкой рекомендуем не тянуть.

Кроме того, не следует забывать и о том, что для успешной разблокировки Phenom II X2 требуется не только удачный процессор, но и подходящая материнская плата, обладающая возможностью включения ACC «в старом стиле», число которых под давлением AMD неуклонно сокращается.

Кстати, следует отметить и тот факт, что от настоящих Phenom II X4 разблокированный Phenom II X2 всё-таки отличается. Во-первых, он определяется материнской платой как неизвестный науке процессор с названием Phenom II X4 B50. И, во-вторых, также как в случае и с трёхъядерными процессорами, разблокировка ядер приводит к неработоспособности процессорных термодатчиков.

Выводы

К сожалению, мы всё ещё не можем говорить о том, что компании AMD удалость безоговорочно превзойти своего основного конкурента хоть в чём-нибудь. Но это совершенно не означает, что новые двухъядерные процессоры не удались. Напротив, на фоне своих предшественников Phenom II X2 и Athlon II X2 выглядят более чем революционно. Если ранее двухъядерные процессоры AMD могли противопоставляться только младшим представителям бюджетной серии Intel Pentium, да и то с определёнными оговорками, то теперь можно говорить, что среди предложений AMD появились вполне достойные двухъядерники, закрывающие ценовую категорию от 80 до 100 долларов.

Среди новинок особенно привлекательно смотрятся процессоры Phenom II X2, которые несколько раз на протяжении тестирования вызывали у нас возгласы восхищения. Среди главных положительных моментов следует отметить высокую (для своей цены) производительность этих процессоров в играх, офисных приложениях и при кодировании видео, а также существующую ненулевую вероятность разблокировки двух дополнительных ядер. Эти качества делают Phenom II X2 весьма привлекательным предложением, даже несмотря на сравнительно высокое для двухъядерных процессоров энергопотребление и не самые лучшие результаты разгона. Иными словами, благодаря Phenom II X2 компания AMD имеет реальный шанс потеснить на рынке некоторые модели конкурирующих процессоров семейства Core 2 Duo.

Правда, определённое беспокойство вызывает доступность этих моделей. Использование в их основе четырёхъядерных полупроводниковых кристаллов Deneb делает производство таких двухъядерников маловыгодным мероприятием для AMD. Поэтому, скорее всего, для их изготовления в основном будет использоваться отбраковка от выпуска трёхъядерных и четырёхъядерных процессоров. А это значит, что объёмы поставок Phenom II X2 будут напрямую зависеть не от спроса, а от качества 45-нм технологического процесса и объёмов производства старших моделей процессоров. Именно поэтому следует быть морально готовыми к тому, что на рынке будет ощущаться некоторая нехватка Phenom II X2, влекущая за собой нежелательный рост цен.

Роль же воистину массового двухъядерного решения компания AMD возлагает на другое семейство процессоров – Athlon II X2. А оно в сравнении с Phenom II X2 имеет заметные слабые стороны. Эти процессоры используют собственный двухъядерный полупроводниковый кристалл Regor, лишённый кэш-памяти третьего уровня. В результате, производительность Athlon II X2 в целом ряде приложений оказывается существенно ниже. Фактически, можно даже говорить о том, что процессоры данного типа способны составить реальную конкуренцию лишь старшим представителям серии Pentium, но не младшим Core 2 Duo. Кроме того, Athlon II X2 не преподносит и никаких подарков вроде возможности активации заблокированных ядер.

Впрочем, в сравнении с Athlon X2 прошлого поколения новое семейство Athlon II X2 всё равно является огромным шагом вперёд. Эти процессоры предлагают неплохой разгонный потенциал, гораздо более низкое энергопотребление и, конечно же, возросшую производительность. При этом очевидно, что на достигнутом AMD останавливаться не собирается, и серия Athlon II X2 вскоре получит дальнейшее развитие как в сторону роста тактовых частот, так и в сторону снижения энергопотребления и тепловыделения.

Ну и, конечно же, мы не можем отрицать того факта, что для продвижения Phenom II X2 и Athlon II X2, как и всех других своих процессоров, построенных на 45 нм ядрах, компания AMD выбрала чрезвычайно привлекательную с потребительской точки зрения ценовую политику. Она подчиняется очень простому правилу: любые модели Phenom II и Athlon II предлагают на данный момент более высокое среднее быстродействие, нежели процессоры Intel аналогичной стоимости.

Другие материалы по данной теме


Дешёвые двухъядерники: AMD Athlon X2 против Intel Pentium
Новый степпинг Intel Core i7: знакомимся с i7-975 XE
Intel Core 2 Duo под ударом: обзор процессора AMD Phenom II X3 720 Black Edition

Публикации по теме